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Figure 1.1 The basic idea of Markov localization: A mobile robot during global local-

ization. Markov localization techniques will be investigated in Chapters ?? and ??.




Figure 1.2 Top image: a robot navigating through open, featureless space may lose
track of where it is. Bottom: This can be avoided by staying near known obstacles.
These figures are results of an algorithm called coastal navigation, which will be dis-
cussed in Chapter ??. Images courtesy of Nicholas Roy, MIT.
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Figure 2.1 Robot environment interaction.
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Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,
states, and measurements.



Figure 2.3 A mobile robot estimating the state of a door.
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Figure 3.2 Illustration of Kalman filters: (a) initial belief, (b) a measurement (in bold)
with the associated uncertainty, (c) belief after integrating the measurement into the
belief using the Kalman filter algorithm, (d) belief after motion to the right (which
introduces uncertainty), (e) a new measurement with associated uncertainty, and (f)
the resulting belief.
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Figure 3.3 (a) Linear and (b) nonlinear transformation of a Gaussian random vari-
able. The lower right plots show the density of the original random variable, X. This
random variable is passed through the function displayed in the upper right graphs
(the transformation of the mean is indicated by the dotted line). The density of the
resulting random variable Y is plotted in the upper left graphs.
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Figure 3.4 Illustration of linearization applied by the EKE. Instead of passing the
Gaussian through the nonlinear function g, it is passed through a linear approxima-
tion of g. The linear function is tangent to g at the mean of the original Gaussian.
The resulting Gaussian is shown as the dashed line in the upper left graph. The lin-
earization incurs an approximation error, as indicated by the mismatch between the
linearized Gaussian (dashed) and the Gaussian computed from the highly accurate
Monte-Carlo estimate (solid).
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Figure 3.5 Dependency of approximation quality on uncertainty. Both Gaussians
(lower right) have the same mean and are passed through the same nonlinear func-
tion (upper right). The higher uncertainty of the left Gaussian produces a more dis-
torted density of the resulting random variable (gray area in upper left graph). The
solid lines in the upper left graphs show the Gaussians extracted from these densities.

The dashed lines represent the Gaussians generated by the linearization applied by
the EKE.
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Figure 3.6 Dependence of the approximation quality on local nonlinearity of the
function g. Both Gaussians (lower right in each of the two panels) have the same co-
variance and are passed through the same function (upper right). The linear approx-
imation applied by the EKF is shown as the dashed lines in the upper right graphs.
The solid lines in the upper left graphs show the Gaussians extracted from the highly

accurate Monte-Carlo estimates. The dashed lines represent the Gaussians generated
by the EKEF linearization.
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Figure 3.7 Illustration of linearization applied by the UKF. The filter first extracts
2n 4 1 weighted sigma points from the n-dimensional Gaussian (n = 1 in this exam-
ple). These sigma points are passed through the nonlinear function g. The linearized
Gaussian is then extracted from the mapped sigma points (small circles in the upper
right plot). As for the EKF, the linearization incurs an approximation error, indi-
cated by the mismatch between the linearized Gaussian (dashed) and the Gaussian
computed from the highly accurate Monte-Carlo estimate (solid).
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Figure 3.8 Linearization results for the UKF depending on the uncertainty of the
original Gaussian. The results of the EKF linearization are also shown for comparison
(c.f. Figure3.5). The unscented transform incurs smaller approximation errors, as can
be seen by the stronger similarity between the dashed and the solid Gaussians.
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Figure 3.9 Linearization results for the UKF depending on the mean of the origi-
nal Gaussian. The results of the EKF linearization are also shown for comparison
(c.f. Figure3.6). The sigma point linearization incurs smaller approximation errors, as
can be seen by the stronger similarity between the dashed and the solid Gaussians.
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Figure 4.1 Histogram representation of a continuous random variable. The gray
shaded area in the lower right plot shows the density of the continuous random vari-
able, X. The histogram approximation of this density is overlaid in light-gray. The
random variable is passed through the function displayed in the upper right graph.
The density and the histogram approximation of the resulting random variable, Y/,
are plotted in the upper left graph. The histogram of the transformed random vari-

able was computed by passing multiple points from each histogram bin of X through
the nonlinear function.
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Figure 42 Dynamic vs. static decomposition. The upper left graph shows the static
histogram approximation of the random variable Y, using 10 bins for covering the
domain of Y (of which 6 are of nearly zero probability). The upper middle graph

presents a tree representation of the same random variable, using the same number
of bins.
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Figure 4.3 The “particle” representation used by particle filters. The lower right
graph shows samples drawn from a Gaussian random variable, X . These samples are
passed through the nonlinear function shown in the upper right graph. The resulting
samples are distributed according to the random variable Y.
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Figure 4.4 Illustration of importance factors in particle filters: (a) We seek to ap-
proximate the target density f. (b) Instead of sampling from f directly, we can only
generate samples from a different density, g. Samples drawn from g are shown at
the bottom of this diagram. (c) A sample of f is obtained by attaching the weight
f(z)/g(z) to each sample . In particle filters, f corresponds to the belief bel(x:) and
g to the belief bel(z).
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Figure 4.5 Different ways of extracting densities from particles. (a) Density and
sample set approximation, (b) Gaussian approximation (mean and variance), (c) his-
togram approximation, (d) kernel density estimate. The choice of approximation
strongly depends on the specific application and the computational resources.
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Figure 4.6 Variance due to random sampling. Samples are drawn from a Gaus-
sian and passed through a nonlinear function. Samples and kernel estimates result-
ing from repeated sampling of 25 (left column) and 250 (right column) samples are
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Figure 4.7 Principle of the low variance resampling procedure. We choose a random
number 7 and then select those particles that correspond to u = r + (m — 1) - M ~*
wherem =1,..., M.
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Figure 5.1 Robot pose, shown in a global coordinate system.
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Figure 5.2 The motion model: Posterior distributions of the robot’s pose upon ex-
ecuting the motion command illustrated by the solid line. The darker a location,
the more likely it is. This plot has been projected into 2-D. The original density is
three-dimensional, taking the robot’s heading direction § into account.
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Figure 5.3 The velocity motion model, for different noise parameter settings.
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Figure 5.4 Sampling from the velocity motion model, using the same parameters as
in Figure 5.3. Each diagram shows 500 samples.
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Figure 5.5 Motion carried out by a noise-free robot moving with constant velocities
v and w and starting at (z y 6)7.
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Figure 5.6 Probability density functions with standard deviation b: (a) Normal dis-

tribution, (b) triangular distribution.
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Figure 5.7 Odometry model: The robot motion in the time interval (¢ — 1, ] is ap-
proximated by a rotation d..t1, followed by a translation d;rans and a second rotation
Orot2. The turns and translations are noisy.
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Figure 5.8 The odometry motion model, for different noise parameter settings.



Figure 5.9 Sampling from the odometry motion model, using the same parameters
as in Figure 5.8. Each diagram shows 500 samples.
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Figure 5.10 Sampling approximation of the position belief for a non-sensing robot.
The solid line displays the actions, and the samples represent the robot’s belief at
different points in time.



(@) p(zt | ue, ze—1) (b) p(x¢ | ue, xe—1,m)

~— (%)

N\ A

@) O

Figure 5.11 Velocity motion model (a) without a map and (b) conditioned on a map
m.
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Figure 6.1 (a) Typical ultrasound scan of a robot in its environment. (b) A misread-
ing in ultrasonic sensing. This effect occurs when firing a sonar signal towards a
reflective surface at an angle a that exceeds half the opening angle of the sensor.



Figure 6.2 A typical laser range scan, acquired with a SICK LMS laser. The envi-
ronment shown here is a coal mine. Image courtesy of Dirk Hahnel, University of
Freiburg.
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Figure 6.3 Components of the range finder sensor model. In each diagram the hor-
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izontal axis corresponds to the measurement zE the vertical to the likelihood.
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Figure 6.4 “Pseudo-density” of a typical mixture distribution p(zf | z¢, m).
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Figure 6.5 Typical data obtained with (a) a sonar sensor and (b) a laser-range sensor



(a) Sonar data, plots for two different ranges
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(b) Laser data, plots for two different ranges
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Figure 6.6 Approximation of the beam model based on (a) sonar data and (b) laser
range data. The sensor models depicted on the left were obtained by a maximum
likelihood approximation to the data sets depicted in Figure 6.5.



(a) Laser scan and part of the map

(b) Likelihood for different positions

Figure 6.7 Probabilistic model of perception: (a) Laser range scan, projected into a
previously acquired map m. (b) The likelihood p(z: | z¢,m), evaluated for all posi-
tions z; and projected into the map (shown in gray). The darker a position, the larger

Pzt | @, m).
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u

Figure 6.8 (a) Example environment with three obstacles (gray). The robot is located
towards the bottom of the figure, and takes a measurement 2/ as indicated by the
dashed line. (b) Likelihood field for this obstacle configuration: the darker a location,
the less likely it is to perceive an obstacle there. The probability p(z | ¢, m) for the
specific sensor beam is shown in Figure 6.9.

(@) phit (2 | @, m) () p(zf | m¢,m)

01 02 03 Zmax 01 02 03 Zmax
Figure 6.9 (a) Probability Puit(2F) as a function of the measurement z{, for the sit-
uation depicted in Figure 6.8. Here the sensor beam passes by three obstacles, with
respective nearest points o1, 02, and o03. (b) Sensor probability p(zf | ¢, m), obtained
for the situation depicted in Figure 6.8, obtained by adding two uniform distributions.



Figure 6.10 (a) Occupancy grid map of the San Jose Tech Museum, (b) pre-processed
likelihood field.




(a) sensor scan (b) likelihood field
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Figure 6.11 (a) Sensor scan, from a bird’s eye perspective. The robot is placed at the
bottom of this figure, generating a proximity scan that consists of the 180 dots in front
of the robot. (b) Likelihood function generated from this sensor scan. The darker a
region, the smaller the likelihood for sensing an object there. Notice that occluded

regions are white, hence infer no penalty.



Figure 6.12 Example of a local map generated from 10 range scans, one of which is
shown.



(a)

(b)

Figure 6.13 Landmark detection model: (a) Posterior distribution of the robot’s pose
given that it detected a landmark in 5m distance and 30deg relative bearing (projected

onto 2-D). (b) Sample robot poses generated from such a detection. The lines indicate
the orientation of the poses.



Figure 7.1 Graphical model of mobile robot localization. The value of shaded nodes
are known: the map m, the measurements z, and the controls u. The goal of localiza-
tion is to infer the robot pose variables .
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(d)

Figure 7.2 Example maps used for robot localization: (a) a manually constructed
2-D metric layout, (b) a graph-like topological map, (c) an occupancy grid map, and

(d) an image mosaic of a ceiling. (d) courtesy of Frank Dellaert, Georgia Institute of
Technology.




Figure 7.3 Example situation that shows a typical belief state during global localiza-
tion in a locally symmetric environment. The robot has to move into one of the rooms
to determine its location.
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Figure 7.4 Example environment used to illustrate mobile robot localization: One-
dimensional hallway environment with three indistinguishable doors. Initially the
robot does not know its location except for its heading direction. Its goal is to find
out where it is.
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Figure 7.5 Illustration of the Markov localization algorithm. Each picture depicts
the position of the robot in the hallway and its current belief bel(z). (b) and (d) ad-

which describes the probability of
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observing a door at the different locations in the hallway.
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ditionally depict the observation model p
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Application of the Kalman filter algorithm to mobile robot localization.

All densities are represented by unimodal Gaussians.

Figure 7.6



Figure 7.7 AIBO robots on the RoboCup soccer field. Six landmarks are placed at
the corners and the midlines of the field.
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Figure 7.8 Prediction step of the EKF algorithm. The panels were generated with
different motion noise parameters. The robot’s initial estimate is represented by the
ellipse centered at u;—1. After moving on a circular arc of 90cm length while turn-
ing 45 degrees to the left, the predicted position is centered at fi;. In panel (a), the
motion noise is relatively small in both translation and rotation. The other panels
represent (b) high translational noise, (c) high rotational noise, and (d) high noise in
both translation and rotation.
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Figure 7.9 Measurement prediction. The left plots show two predicted robot loca-
tions along with their uncertainty ellipses. The true robot and the observation are
indicated by the white circle and the bold line, respectively. The panels on the right
show the resulting measurement predictions. The white arrows indicate the innova-
tions, the differences between observed and predicted measurements.



(a) 10 (b)
o
W o
" -
St w0 @ W
~
5 _
g B
4 > 350
300 Ht
0 50 100 150 200 250 300 350 x [em]
rcm]
(c) 10 (d)
e
W
w
@ Pt
_
5 _
£ E
4 > 350
_
00 Ht
e m e m W
0 50 100 150 200 250 300 350 x [em]
rcm]

Figure 7.10 Correction step of the EKF algorithm. The panels on the left show the
measurement prediction, and the panels on the right the resulting corrections, which
update the mean estimate and reduce the position uncertainty ellipses.
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Figure7.11 EKF-based localization with an accurate (upper row) and a less accurate
(lower row) landmark detection sensor. The dashed lines in the left panel indicate the
robot trajectories as estimated from the motion controls. The solid lines represent the
true robot motion resulting from these controls. Landmark detections at five locations
are indicated by the thin lines. The dashed lines in the right panels show the corrected
robot trajectories, along with uncertainty before (light gray, ;) and after (dark gray,
¥;) incorporating a landmark detection.
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Figure 7.12

Prediction step of the UKF algorithm. The graphs were generated with
different motion noise parameters. The robot’s initial estimate is represented by the
ellipse centered at p1;—1. The robot moves on a circular arc of 90cm length while
turning 45 degrees to the left. In panel (a), the motion noise is relatively small in both
translation and rotation. The other panels represent (b) high translational noise, (c)

high rotational noise, and (d) high noise in both translation and rotation.
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Figure 7.13 Measurement prediction. The left plots show the sigma points predicted

from two motion updates along with the resulting uncertainty ellipses. The true robot
and the observation are indicated by the white circle and the bold line, respectively.
The panels on the right show the resulting measurement prediction sigma points.
The white arrows indicate the innovations, the differences between observed and
predicted measurements.
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Figure 7.14 Correction step of the UKF algorithm. The panels on the left show the
measurement prediction, and the panels on the right the resulting corrections, which
update the mean estimate and reduce the position uncertainty ellipses.
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Figure 7.15 Comparison of UKF and EKF estimates: (a) Robot trajectory according
to the motion control (dashed lines) and the resulting true trajectory (solid lines).
Landmark detections are indicated by thin lines. (b) Reference estimates, generated
by a particle filter. (c) EKF and (d) UKF estimates.
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Figure 7.16 Approximation error due to linearization. The robot moves on a cir-
cle. Estimates based on (a) EKF prediction and (b) UKF prediction. The reference
covariances are extracted from an accurate, sample-based prediction.
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Figure 8.1 Grid localization using a fine-grained metric decomposition. Each pic-
ture depicts the position of the robot in the hallway along with its belief bel(z:),

represented by a histogram over a grid.



Grid Environment

Figure 8.2 Example of a fixed-resolution grid over the robot pose variables z, y,
and 0. Each grid cell represents a robot pose in the environment. Different orien-
tations of the robot correspond to different planes in the grid (shown are only three
orientations).
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Figure 8.3 Average localization error as a function of grid cell size, for ultrasound
sensors and laser range-finders.
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Figure 8.4 Average CPU-time needed for global localization as a function of grid
resolution, shown for both ultrasound sensors and laser range-finders.
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Figure 8.5 Application of a coarse-grained, topological representation to mobile
robot localization. Each state corresponds to a distinctive place in the environment
(a door in this case). The robot’s belief bel(z:) of being in a state is represented by
the size of the circles. (a) The initial belief is uniform over all poses. (b) shows the
belief after the robot made one state transition and detected a door. At this point, it is
unlikely that the robot is still in the left position.
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Figure 8.6 Global localization in a map using laser range-finder data. (a) Scan of
the laser range-finders taken at the start position of the robot (max range readings are
omitted). Figure (b) shows the situation after incorporating this laser scan, starting
with the uniform distribution. (c) Second scan and (d) resulting belief. After integrat-
ing the final scan shown in (e), the robot’s belief is centered at its actual location (see
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Figure 8.7 Global localization in an office environment using sonar data. (a) Path
of the robot. (b) Belief as the robot passes position 1. (c) After some meters of robot
motion, the robot knows that it is in the corridor. (d) As the robot reaches position 3 it
has scanned the end of the corridor with its sonar sensors and hence the distribution is
concentrated on two local maxima. While the maximum labeled | represents the true
location of the robot, the second maximum arises due to the symmetry of the corridor
(position | | is rotated by 180° relative to position | ). (e) After moving through Room
A, the probability of being at the correct position | is now higher than the probability
of being at position | | . (f) Finally the robot’s belief is centered on the correct pose.
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Figure 8.8 Occupancy grid map of the 1994 AAAI mobile robot competition arena.
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Figure 8.9 (a) Data set (odometry and sonar range scans) collected in the environ-
ment shown in Figure 8.8. This data set is sufficient for global localization using the
grid localization. The beliefs at the points marked “A,” “B” and “C” are shown in (b),
(c), and (d).
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Figure 8.10 (a) Odometry information and (b) corrected path of the robot.
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Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot local-

ization.
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Figure 8.12 The MCL algorithm for landmark-based localization. (a) Robot trajec-
tory according to the motion control (dashed lines) and the resulting true trajectory
(solid lines). Landmark detections are indicated by thin lines. (b) Covariances of
sample sets before and after resampling. (c) Sample sets before and after resampling.
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Figure 8.13 Illustration of Monte Carlo localization: Shown here is a robot operating
in an office environment of size 54m x 18m. (a) After moving 5m, the robot is still
globally uncertain about its position and the particles are spread through major parts
of the free-space. (b) Even as the robot reaches the upper left corner of the map, its
belief is still concentrated around four possible locations. (c) Finally, after moving
approximately 55m, the ambiguity is resolved and the robot knows where it is. All
computation is carried out in real-time on a low-end PC.



Figure 8.14 Global localization using a camera pointed at the ceiling.
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Figure 8.16 Monte Carlo localization with random particles. Each picture shows a
particle set representing the robot’s position estimate (small lines indicate the orien-
tation of the particles). The large circle depicts the mean of the particles, and the true
robot position is indicated by the small, white circle. Marker detections are illustrated
by arcs centered at the detected marker. The pictures illustrate global localization (a)-

(d) and relocalization (e)—(h).
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Figure 8.17 (a) plain MCL (top curve), MCL with random samples (center curve),
and Mixture MCL with mixture proposal distribution (bottom curve). The error rate
is measured in percentage of time during which the robot lost track of its position, for
a data set acquired by a robot operating in a crowded museum. (b) Error as a function
of time for standard MCL and mixture MCL, using a ceiling map for localization.
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Figure 8.18 KLD-sampling: Typical evolution of number of samples for a global
localization run, plotted against time (number of samples is shown on a log scale).
The solid line shows the number of samples when using the robot’s laser range-finder,
the dashed graph is based on sonar sensor data.
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Figure 8.19 Comparison of KLD-sampling and MCL with fixed sample set sizes.
The z-axis represents the average sample set size. The y-axis plots the KL-distance
between the reference beliefs and the sample sets generated by the two approaches.
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Figure 8.20 Scenes from the “Deutsches Museum Bonn,” where the mobile robot

“Rhino” was frequently surrounded by dozens of people.
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Figure 8.21 Laser range scans are often heavily corrupted when people surround
the robot. How can a robot maintain accurate localization under such circumstances?



(a) (b)

Figure 8.22 Illustration of our measurement rejection algorithm: Shown in both di-
agrams are range scans (no max-range readings). Lightly shaded readings are filtered
out.
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Figure 8.23 Comparison of (a) standard MCL and (b) MCL with the removal of
sensor measurements likely caused by unexpected obstacles. Both diagrams show
the robot path and the end-points of the scans used for localization.



Acquiring maps with mobile robots is a challenging problem for a number
of reasons:

* The hypothesis space, which is the space of all possible maps, is huge.
Since maps are defined over a continuous space, the space of all maps has
infinitely many dimensions. Even under discrete approximations, such
as the grid approximation that shall be used in this chapter, maps can
easily be described 10° or more variables. The sheer size of this high-
dimensional space makes it challenging to calculate full posteriors over
maps; hence, the Bayes filtering approach that worked well for localiza-
tion is inapplicable to the problem of learning maps, at least in its naive
form discussed thus far.

* Learning maps is a “chicken-and-egg” problem, for which reason it is
often referred to as the simultaneous localization and mapping (SLAM) or
concurrent mapping and localization problem. First, there is a localization
problem. When the robot moves through its environment, it accumu-
lates errors in odometry, making it gradually less certain as to where it
is. Methods exist for determining the robot’s pose when a map is avail-
able, as we have seen in the previous chapter. Second, there is a mapping
problem. Constructing a map when the robot’s poses are known is also
relatively easy—a claim that will be substantiated in this chapter and sub-
sequent chapters. In the absence of both an initial map and exact pose
information, however, the robot has to do both: estimating the map and
localizing itself relative to this map.

Of course, not all mapping problems are equally hard. The hardness of the
mapping problem is the result of a collection of factors, the most important
of which are:

* Size. The larger the environment relative to the robot’s perceptual range,
the more difficult it is to acquire a map.

¢ Noise in perception and actuation. If robot sensors and actuators were
noise-free, mapping would be a simple problem. The larger the noise, the
more difficult the problem.

* Perceptual ambiguity. The more frequently different places look alike,
the more difficult it is to establish correspondence between different loca-
tions traversed at different points in time.
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Figure 9.1 (a) Raw range data, position indexed by odometry. (b) Occupancy grid
map.

* Cycles. Cycles in the environment are particularly difficult to map. If a
robot just goes up and down a corridor, it can correct odometry errors
incrementally when coming back. Cycles make robots return via different
paths, and when closing a cycle the accumulated odometric error can be
huge!



Figure 9.2 Graphical model of mapping with known poses. The shaded variables
(poses = and measurements z) are known. The goal of mapping is to recover the map
m.
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Figure 9.3 Two examples of an inverse measurement model in-
verse_range_sensor_model for two different measurement ranges. The darkness of
each grid cell corresponds to the likelihood of occupancy. This model is somewhat
simplistic; in contemporary implementations the occupancy probabilities are usually
weaker at the border of the measurement cone.



Figure 9.4 Incremental learning of an occupancy grid map using ultra-sound data
in a corridor environment. The upper left image shows the initial map and the lower
right image contains the resulting map. The maps in columns 2 to 4 are the local maps
built from an inverse sensor model. Measurements beyond a 2.5m radius have not
been considered. Each cone has an opening angle of 15 degrees. Images courtesy of
Cyrill Stachniss, University of Freiburg.



Figure 9.5 Occupancy probability map of an office environment built from sonar
measurements. Courtesy of Cyrill Stachniss, University of Freiburg.
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Figure 9.6 (a) Occupancy grid map and (b) architectural blue-print of a large open
exhibit space. Notice that the blue-print is inaccurate in certain places.
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Figure 9.7 (a) Raw laser range data with corrected pose information. Each dot cor-
responds to a detection of an obstacle. Most obstacles are static (walls etc.), but some
were dynamic, since people walked near the robot during data acquisition. (b) Occu-
pancy grid map built from the data. The gray-scale indicates the posterior probability:
Black corresponds to occupied with high certainty, and white to free with high cer-
tainty. The gray background color represents the prior. Figure (a) courtesy of Steffen
Gutmann.
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Figure 9.8 Estimation of occupancy maps using stereo vision: (a) camera image, (b)
sparse disparity map, (c) occupancy map by projecting the disparity image onto the
2-D plane and convolving the result with a Gaussian. Images courtesy of Thorsten
Frohlinghaus.



(a) (0

Figure 9.9 Inverse sensor model learned from data: Three sample sonar scans (top
row) and local occupancy maps (bottom row), as generated by the neural network.
Bright regions indicate free-space, and dark regions indicate walls and obstacles (en-
larged by a robot diameter).
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Figure 9.10 The problem with the standard occupancy grid mapping algorithm in
Chapter ??: For the environment shown in Figure (a), a passing robot might receive
the (noise-free) measurement shown in (b). The factorial approach maps these beams
into probabilistic maps separately for each grid cell and each beam, as shown in (c)
and (d). Combining both interpretations yields the map shown in (e). Obviously,
there is a conflict in the overlap region, indicated by the circles in (e). The interesting
insight is: There exist maps, such as the one in diagram (f), that perfectly explain the
sensor measurement without any such conflict. For a sensor reading to be explained,
it suffices to assume an obstacle somewhere in the cone of a measurement, and not

everywhere.




(a) (b)

(c) d)

AR e

P L s s R

Figure 9.11 (a) Sonar range measurements from a noise-free simulation. (b) Results
of the standard occupancy mapper, lacking the open door. (c) A maximum a posterior
map. (d) The residual uncertainty in this map, obtained by measuring the sensitivity
of the map likelihood function with respect to individual grid cells. This map clearly
shows the door, and it also contains flatter walls at both ends.



Figure 9.12 Mobile indoor robot of the type RWI B21, with 24 sonar sensors
mounted on a circular array around the robot.



Figure 10.1 Graphical model of the online SLAM problem. The goal of online SLAM
is to estimate a posterior over the current robot pose along with the map.



Figure 10.2 Graphical model of the full SLAM problem. Here, we compute a joint
posterior over the whole path of the robot and the map.



(a)

(0

Figure 10.3 EKF applied to the online SLAM problem. The robot’s path is a dotted
line, and its estimates of its own position are shaded ellipses. Eight distinguishable
landmarks of unknown location are shown as small dots, and their location estimates
are shown as white ellipses. In (a)—(c) the robot’s positional uncertainty is increas-
ing, as is its uncertainty about the landmarks it encounters. In (d) the robot senses
the first landmark again, and the uncertainty of all landmarks decreases, as does the
uncertainty of its current pose. Image courtesy of Michael Montemerlo, Stanford

(b)

(d)

University.
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Figure 10.4 EKF SLAM with known data association in a simulated environment.
The map is shown on the left, with the gray-level corresponding to the uncertainty
of each landmark. The matrix on the right is the correlation matrix, which is the
normalized covariance matrix of the posterior estimate. After some time, all z- and
all y-coordinate estimates become fully correlated.
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Figure 10.5 Example of Kalman filter estimation of the map and the vehicle pose.
Image courtesy of Stefan Williams and Hugh Durrant-Whyte, Australian Centre for
Field Robotics.



Figure 10.6 Underwater vehicle Oberon, developed at the University of Sydney.
Image courtesy of Stefan Williams and Hugh Durrant-Whyte, Australian Centre for
Field Robotics.



(a) RWI B21 Mobile robot and testing environment

(b) Raw odometry (c) Result of EKF SLAM with ground truth
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Figure 10.7 (a) The MIT B21 mobile robot in a calibrated testing facility. (b) Raw
odometry of the robot, as it is manually driven through the environment. (c) The
result of EKF SLAM is a highly accurate map. The image shows the estimated map
overlayed on a manually constructed map. All images and results are courtesy of
John Leonard and Matthew Walter, MIT.
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Figure 11.1 GraphSLAM illustration, with 4 poses and two map features. Nodes
in the graphs are robot poses and feature locations. The graph is populated by two
types of edges: Solid edges link consecutive robot poses, and dashed edges link poses
with features sensed while the robot assumes that pose. Each link in GraphSLAM is a
non-linear quadratic constraint. Motion constraints integrate the motion model; mea-
surement constraints the measurement model. The target function of GraphSLAM is
sum of these constraints. Minimizing it yields the most likely map and the most likely
robot path.
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Figure 11.2 Illustration of the acquisition of the information matrix in GraphSLAM.
The left diagram shows the dependence graph, the right the information matrix.
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Figure 11.3 Reducing the graph in GraphSLAM: Arcs are removed to yield a net-
work of links that only connect robot poses.



Figure 11.4 The Groundhog robot is a 1,500 pound custom-built vehicle equipped
with onboard computing, laser range sensing, gas and sinkage sensors, and video
recording equipment. The robot has been built to map abandoned mines.



Figure 11.5 Map of a mine, acquired by pairwise scan matching. The diameter of
this environment is approximately 250 meters. The map is obviously inconsistent,
in that several hallways show up more than once. Image courtesy of Dirk Hahnel,
University of Freiburg.
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Figure 11.6 Mine map skeleton, visualizing the local maps.
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Figure 11.7 Data association search. See text.




Figure 11.8 Final map, after optimizing for data associations. Image courtesy of
Dirk Héhnel, University of Freiburg.
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Figure 11.9 Mine map generated by the Atlas SLAM algorithm by ?. Image courtesy
of Michael Bosse, Paul Newman, John Leonard, and Seth Teller, MIT.
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Figure 11.10 (a) A 3-D map of Stanford’s campus. (b) The robot used for acquir-
ing this data is based on a Segway RMP platform, whose development was funded
by the DARPA MARS program. Image courtesy of Michael Montemerlo, Stanford
University. (Turn this page 90 degrees to the right to view this figure.)



(a)

(b)

Figure 11.11 2-D slice through the Stanford campus map (a) before and (b) after
alignment using conjugate gradient. Such an optimization takes only a few seconds
with the conjugate gradient method applied to the least square formulation of Graph-
SLAM. Images courtesy of Michael Montemerlo, Stanford University.



Figure 12.1 Motivation for using an information filter for online SLAM. Left: Simu-
lated robot run with 50 landmarks. Center: The correlation matrix of an EKF, which
shows strong correlations between any two landmarks’ coordinates. Right: The nor-
malized information matrix of the EKF is naturally sparse. This sparseness leads to a
SLAM algorithm that can be updated more efficiently.
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Figure 12.2 Illustration of the network of features generated by our approach.
Shown on the left is a sparse information matrix, and on the right a map in which
entities are linked whose information matrix element is non-zero. As argued in the
text, the fact that not all features are connected is a key structural element of the
SLAM problem, and at the heart of our constant time solution.
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Figure 12.3 The effect of measurements on the information matrix and the associ-
ated network of features: (a) Observing m; results in a modification of the informa-
tion matrix elements Q, m,. (b) Similarly, observing m; affects Qq, m.,.
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Figure 12.4 The effect of motion on the information matrix and the associated
network of features: (a) before motion, and (b) after motion. If motion is non-
deterministic, motion updates introduce new links (or reinforce existing links) be-
tween any two active features, while weakening the links between the robot and those
features. This step introduces links between pairs of features.
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Figure 12.5 Sparsification: A feature is deactivated by eliminating its link to the
robot. To compensate for this change in information state, links between active fea-
tures and/or the robot are also updated. The entire operation can be performed in

constant time.
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Figure 12.6 Comparison of (a) SEIF without sparsification with (b) SEIF using the
sparsification step with 4 active landmarks. The comparison is carried out in a sim-
ulated environment with 50 landmarks. In each row, the left panel shows the set of
links in the filter, the center panel the correlation matrix, and the right panel the nor-
malized information matrix. Obviously, the sparsified SEIF maintains many fewer
links, but its result is less confident as indicated by its less-expressed correlation ma-

trix.



1.2 T T T T T T
SEIF —e—
= EKF —8—
= 1r 4
S
Q
2
= 08 -
2
2 o6} :
2
<
g 04r -
=)
E 02 -
Q
0 1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500
Number of landmarks

Figure 12.7 The comparison of average CPU time between SEIF and EKF.
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Figure 12.8 The comparison of average memory usage between SEIF and EKF.
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Figure 12.9 The comparison of root mean square distance error between SEIF and
EKE
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Figure 12.10 The update time of the EKF (leftmost data point only) and the SEIF,
for different degrees of sparseness, as induced by a bound on the number of active
features as indicated.
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Figure 12.11 The approximation error EKF (leftmost data point only) and SEIF for
different degrees of sparseness. In both figures, the map consists of 50 landmarks.



Figure 12.12 The combined Markov blanket of feature y,, and the observed features
is usually sufficient for approximating the posterior probability of the feature loca-
tions, conditioning away all other features.



Figure 12.13 The vehicle used in our experiments is equipped with a 2-D laser range
finder and a differential GPS system. The vehicle’s ego-motion is measured by a lin-
ear variable differential transformer sensor for the steering, and a wheel-mounted
velocity encoder. In the background, the Victoria Park test environment can be seen.
Image courtesy of José Guivant and Eduardo Nebot, Australian Centre for Field
Robotics.
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Figure 12.14 The testing environment: A 350 meter by 350 meter patch in Victoria
Park in Sydney. Overlayed is the integrated path from odometry readings. Data and
aerial image courtesy of José Guivant and Eduardo Nebot, Australian Centre for Field
Robotics; results courtesy of Michael Montemerlo, Stanford University.
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Figure 12.15 The path recovered by the SEIF, is correct within £1m. Courtesy of
Michael Montemerlo, Stanford University.
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Figure 12.16 Overlay of estimated landmark positions and robot path. Images cour-
tesy of Michael Montemerlo, Stanford University
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Figure 12.17 (a) The data association tree, whose branching factor grows with
the number of landmarks in the map. (b) The tree-based SEIF maintains the log-
likelihood for the entire frontier of expanded nodes, enabling it to find alternative
paths. (c) Improved path.
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Figure 12.18 (a) Map with incremental ML scan matching and (b) full recursive
branch-and-bound data association. Images courtesy of Dirk Hahnel, University of
Freiburg.



@] w b w
=0 AN AN AN
200 -200
250 250
-300 -300
-350 -350
-400 400
-450 450
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70

Figure 12.19 (a) Log-likelihood of the actual measurement, as a function of time.
The lower likelihood is caused by the wrong assignment. (b) Log-likelihood, when
recursively fixing false data association hypotheses through the tree search. The suc-
cess is manifested by the lack of a distinct dip.
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Figure 12.20 Example of the tree-based data association technique: (a) When clos-
ing a large loop, the robot first erroneously assumes the existence of a second, parallel
hallway. However, this model leads to a gross inconsistency as the robot encounters
a corridor at a right angle. At this point, the approach recursively searches for im-
proved data association decisions, arriving on the map shown in diagram (b).



(a) Robot path (b) Incremental ML (map inconsistent on left)

Figure 12.21 (a) Path of the robot. (b) Incremental ML (scan matching) (c) Fast-
SLAM. (d) SEIFs with lazy data association. Image courtesy of Dirk Hahnel, Univer-
sity of Freiburg.



Figure 12.22 Eight local maps obtained by splitting the data into eight sequences.




Figure 12.23 A multi-robot SLAM result, obtained using the algorithm described in
this chapter. Image courtesy of Yufeng Liu.
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Figure 12.24 Snapshots from our multi-robot SLAM simulation at different points
in time. During Steps 62 through 64, vehicle 1 and 2 traverse the same area for the
first time; as a result, the uncertainty in their local maps shrinks. Later, in steps 85
through 89, vehicle 2 observes the same landmarks as vehicle 3, with a similar effect
on the overall uncertainty. After 500 steps, all landmarks are accurately localized.
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Figure 13.1 Particles in FastSLAM are composed of a path estimate and a set of
estimators of individual feature locations with associated covariances.




Do the following M times:

Retrieval. Retrieve a pose xgk_]l from the particle set Y;_;.

Prediction. Sample a new pose ;z:,[fk] ~ p(zy | xgk_]l, Ut).

Measurement update. For each observed feature 2! identify the
correspondence j for the measurement z;, and incorporate the
measurement 2} into the corresponding EKF, by updating the mean

(K] ; (]
;. and covariance ;5.

Importance weight. Calculate the importance weight w!*! for the
new particle.

)

Resampling. Sample, with replacement, M particles, where each
particle is sampled with a probability proportional to w!*].

Figure 13.2 The basic steps of the FastSLAM algorithm.
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Figure 13.3 The SLAM problem depicted as Bayes network graph. The robot moves
from pose x;_1 to pose z;42, driven by a sequence of controls. At each pose z; it
observes a nearby feature in the map m = {m1,m2, ms}. This graphical network
illustrates that the pose variables “separate” the individual features in the map from
each other. If the poses are known, there remains no other path involving variables
whose value is not known, between any two features in the map. This lack of a path
renders the posterior of any two features in the map conditionally independent (given
the poses).



Figure 13.4 Samples drawn from the probabilistic motion model.
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Figure 13.5 Samples cannot be drawn conveniently from the target distribution
(shown as a solid line). Instead, the importance sampler draws samples from the pro-
posal distribution (dashed line), which has a simpler form. Below, samples drawn
from the proposal distribution are drawn with lengths proportional to their impor-
tance weights.




(a) (b)

Figure 13.6 Mismatch between proposal and posterior distributions: (a) illustrates
the forward samples generated by FastSLAM 1.0, and the posterior induced by the
measurement (ellipse). Diagram (b) shows the sample set after the resampling step.
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Figure 13.7 The data association problem in SLAM. This figure illustrates that the
best data association may vary even within regions of high likelihood for the pose of
the robot.
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Figure 13.8 (a) A tree representing N = 8 feature estimates within a single particle.
(b) Generating a new particle from an old one, while modifying only a single Gaus-
sian. The new particle receives only a partial tree, consisting of a path to the modified
Gaussian. All other pointers are copied from the generating tree. This can be done in
time logarithmic in V.
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Figure 13.9 Memory requirements for linear and log(/V) version of FastSLAM 1.0.



(a) Raw vehicle path (b) FastSLAM 1.0 (solid), GPS path (dashed)

Figure 13.10 (a) Vehicle path predicted by the odometry; (b) True path (dashed line)
and FastSLAM 1.0 path (solid line); (c) Victoria Park results overlayed on aerial im-
agery with the GPS path in blue (dashed), average FastSLAM 1.0 path in yellow
(solid), and estimated features as yellow circles. (d) Victoria Park Map created with-
out odometry information. Data and aerial image courtesy of José Guivant and Ed-
uardo Nebot, Australian Centre for Field Robotics.



(a) Map without feature elimination (b) Map with feature elimination

Figure 13.11 FastSLAM 1.0 (a) without and (b) with feature elimination based on
negative information.



Accuracy of FastSLAM vs. the EKF on Simulated Data
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Figure 13.12 A comparison of the accuracy of FastSLAM 1.0 and the EKF on simu-
lated data.
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Figure 13.13 FastSLAM 1.0 and 2.0 with varying levels of measurement noise: As to
be expected, FastSLAM 2.0 is uniformly superior to FastSLAM 1.0. The difference is
particularly obvious for small particle sets, where the improved proposal distribution
focuses the particles much better.



Figure 13.14 Map of Victoria Park by FastSLAM 2.0 with M = 1 particle.
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Figure 13.15 FastSLAM 2.0 can close larger loops than FastSLAM 1.0 given a con-
stant number of particles.
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Figure 13.16 (a) Accuracy as a function of loop size: FastSLAM 2.0 can close larger
loops than FastSLAM 1.0 given a fixed number of particles. (b) Comparison of the
convergence speed of FastSLAM 2.0 and the EKF.



Figure 13.17 Application of the grid-based variant of the FastSLAM algorithm. Each
particle carries its own map and the importance weights of the particles are computed
based on the likelihood of the measurements given the particle’s own map.



Figure 13.18 Occupancy grid map generated from laser range data and based on
pure odometry. All images courtesy of Dirk Héhnel, University of Freiburg.



Figure 13.19 Occupancy grid map corresponding to the particle with the highest
accumulated importance weight obtained by the algorithm listed in Table ?? from
the data depicted in Figure 13.18. The number of particles to create this experiment
was 500. Also depicted in this image is the path represented by the particle with the
maximum accumulated importance weight.



(a) (b)

Figure 13.20 Trajectories of all samples shortly before (left) and after (right) closing
the outer loop of the environment depicted in Figure 13.19. Images courtesy of Dirk
Héhnel, University of Freiburg.



Figure 14.1 Near-symmetric environment with narrow and wide corridors. The
robot starts at the center with unknown orientation. Its task is to move to the goal
location on the left.



(a)

L////////////// P R SO R a e RSPy s

TTOTRTONN

S e e —/ Vi

- e o e o / P e e e i

L{/

/A
/A
/
/
/
4
2
\
‘\
\ S e ————— A a———
\
AN

-—

—

e
e e s
f

PPV

x \;\ S e -\ NN e
A AR R TET T TR Rttt TRy

NN S

(b)

A Sa ™\ N / IR b VP P D b P b P D D Dl DDl e e

N\
\

NN Na SN /1

AAAAAT S

Figure 14.2 The value function and control policy for an MDP with (a) deterministic
and (b) nondeterministic action effects. Under the deterministic model, the robot is
perfectly fine to navigate through the narrow path; it prefers the longer path when
action outcomes are uncertain, to reduce the risk of colliding with a wall. Panel (b)
also shows a path.
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Figure 14.3 Knowledge gathering actions in POMDPs: To reach its goal with more
than 50% chance, the belief space planner first navigates to a location where the global
orientation can be determined. Panel (a) shows the corresponding policy, and a pos-
sible path the robot may take. Based on its location, the robot will then find itself in
panel (b) or (c), from where it can safely navigate to the goal.



Figure 14.4 An example of an infinite-horizon value function T, assuming that the
goal state is an “absorbing state.” This value function induces the policy shown in
Figure 14.2a.



(b)

Figure 14.5 Example of value iteration over state spaces in robot motion. Obstacles
are shown in black. The value function is indicated by the gray shaded area. Greedy
action selection with respect to the value function lead to optimal control, assuming
that the robot’s pose is observable. Also shown in the diagrams are example paths
obtained by following the greedy policy.
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Figure 14.6 (a) 2-DOF robot arm in an environment with obstacles. (b) The configu-
ration space of this arm: the horizontal axis corresponds to the shoulder joint, and the
vertical axis to its elbow joint configuration. Obstacles are shown in gray. The small
dot in this diagram corresponds to the configuration on the left.



Figure 14.7 (a) Value iteration applied to a coarse discretization of the configura-
tion space. (b) Path in workspace coordinates. The robot indeed avoids the vertical
obstacle.



(b)

Figure 14.8 (a) Probabilistic value iteration, here over a fine-grained grid. (b) The
corresponding path.
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Figure 15.1 The two-state environment used to illustrate value iteration in belief
space.
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Figure 15.2 Diagrams (a), (b), and (c) depict the expected payoff r as a function of
the belief state parameter p; = b(z1), for each of the three actions w1, u2, and us.
(d) The value function at horizon T' = 1 corresponds to the maximum of these three

linear functions.
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Figure 15.3 The effect of sensing on the value function: (a) The belief after sensing
z1 as a function of the belief before sensing z;. Sensing z; makes the robot more con-
fident that the state is =1. Projecting the value function in (b) through this nonlinear
function results in the non-linear value function in (c). (d) Dividing this value func-
tion by the probability of observing z: results in a piecewise linear function. (e) The
same piecewise linear function for measurement z3. (f) The expected value function

after sensing.
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Figure 15.4 (a) The belief state parameter p] after executing action us, as a function
of the parameter p; before the action. Propagating the belief shown in (b) through
the inverse of this mapping results in the belief shown in (c). (d) The value function
V> obtained by maximizing the propagated belief function, and the payoff of the two

remaining actions, u1 and ua.
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Figure 15.5 The value function V' for horizons 7' = 10 and 7' = 20. Note that the
vertical axis in these plots differs in scale from previous depictions of value functions.
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Figure 15.6 Comparison of an exact pruning algorithm (left row) versus a non-
pruning POMDP algorithm (right row), for the first few steps of the POMDP planning
algorithm. Obviously, the number of linear constraints increases dramatically with-
out pruning. At T' = 20, the unpruned value function is defined over 10°*"#%* linear
functions, whereas the pruned one only uses 13 such functions.
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Figure 15.7 The benefit of point-based value iteration over general value iteration:
Shown in (a) is the exact value function at horizon T' = 30 for a different example,
which consists of 120 constraints, after pruning. On the right is the result of the PBVI
algorithm retaining only 11 linear functions. Both functions yield virtually indistin-
guishable results when applied to control.
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Figure 15.8 Indoor environment, in which we seek a control policy for finding a
moving intruder. (a) Occupancy grid map, and (b) discrete state set used by the
POMDP. The robot tracks its own pose sufficiently well that the pose uncertainty
can be ignored. The remaining uncertainty pertains to the location of the person.
Courtesy of Joelle Pineau, McGill University.
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Figure 15.9 A successful search policy. Here the tracking of the intruder is imple-
mented via a particle filter, which is then projected into a histogram representation
suitable for the POMDP. The robot first clears the room on the top, then proceeds
down the hallway. Courtesy of Joelle Pineau, McGill University.
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Figure 16.1 Examples of robot paths in a large, open environment, for two different
configurations (top row and bottom row). The diagrams (a) and (c) show paths gen-
erated by a conventional dynamic programming path planner that ignores the robot’s
perceptual uncertainty. The diagrams (b) and (d) are obtained using the augmented
MDP planner, which anticipates uncertainty and avoids regions where the robot is
more likely to get lost. Courtesy of Nicholas Roy, MIT.
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Figure 16.2 Performance comparison of MDP planning and Augmented MDP plan-
ning. Shown here is the uncertainty (entropy) at the goal location as a function of the
sensor range. Courtesy of Nicholas Roy, MIT.
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Figure 16.3 The policy computed using an advanced version of AMDP, with a
learned state representation. The task is to find an intruder. The gray particles are
drawn from the distribution of where the person might be, initially uniformly dis-
tributed in (a). The black dot is the true (unobservable) position of the person. The
open circle is the observable position of the robot. This policy succeeds with high
likelihood. Courtesy of Nicholas Roy, MIT, and Geoffrey Gordon, CMU.
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Figure 16.4 A robotic find and fetch task: (a) The mobile robot with gripper and
camera, holding the target object. (b) 2-D trajectory of three successful policy execu-
tions, in which the robot rotates until it sees the object, and then initiates a successful
grasp action (c) success rate as a function of number of planning steps, evaluated in
simulation.



Figure 17.1 Unpredictability of the exploration problem: A robot in (a) might an-
ticipate a sequence of three controls, but whether or not this sequence is executable
depends on the things the robot finds out along the way. Any exploration policy has
to be highly reactive.



(a) Environment with an example posterior.  (b) Effect of exploration action.

Figure 17.2 (a) Active localization in a symmetric environment: Shown here is an
environment with a symmetric corridor, but an asymmetric arrangement of rooms,
labeled A, B, and C. This figure also shows an exploration path. (b) An example of
the exploration action “go backward 9 meters, go left 4 meters.” If the robot’s pose
posterior possesses two distinct modes as shown here, the actual control in global
world coordinates might lead to two different places.



(a) Path of the localizing robot (b) Early belief distribution with six modes

(c) Occupancy probability in robot coordinates  (d) Expected costs of motion

(f) Gain plus costs (the darker, the better)

Figure 17.3 Illustration of active localization. This figure displays a number of aux-
iliary functions for computing the optimal action, for a multi-hypothesis pose distri-
bution.



(a) Belief distribution

(b) Occupancy prob. in robot coordinates

(d) Exp. information gain in robot coordinates
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(e) Gain plus costs (the darker, the better)

(f) Final belief after active localization

Figure 17.4 Illustration of active localization at some later point in time, for a belief

with two distinct modes.



(a) Occupancy grid map (b) Cell entropy

(c) Explored and unexplored space (d) Value function for exploration

Figure 17.5 Example of the essential step in exploration for mapping. (a) shows a
partial grid map; (b) depicts the map entropy; (c) shows the space for which we have
zero information; and (d) displays the value function for optimal exploration.



(a) Map segment (b) Entropy (c) Exp. information gain

Figure 17.6 Map, entropy and expected information gain. This figure illustrates
that with the appropriate scaling, entropy and expected information gain are nearly
indistinguishable.



(a) Exploring value function

(b) Exploration path
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Figure 17.7 Illustration of autonomous exploration. (a) Exploration values V, com-
puted by value iteration. White regions are completely unexplored. By following the
gray-scale gradient, the robot moves to the next unexplored area on a minimum-cost
path. The large black rectangle indicates the global wall orientation fan. (b) Actual
path traveled during autonomous exploration, along with the resulting metric map.
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Figure 17.8 (a) Urban robot for indoor and outdoor exploration. The urban robot’s
odometry happens to be poor. (b) Exploration path of the autonomously exploring
robot, using the exploration techniques described in the text.
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Figure 17.9 Two robots exploring an environment. Without any coordination both
vehicles would decide to approach the same target location. Each image shows the
robot, the map, and its value function. The black rectangle indicates the target points
with minimum cost.
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Figure 17.10 Target positions obtained using the coordination approach. In this case
the target point for the second robot is to the left in the corridor.



Figure 17.11 Coordinated exploration by a team of mobile robots. The robots dis-
tribute themselves throughout the environment.



Figure 17.12 Map of a 62 x 43m? large environment learned by three robots in 8
minutes.
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Figure 17.13 Exploration time obtained in a simulation experiment in which robot
teams of different sizes explore the environment shown in the left image.
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Figure 17.14 Coordinated exploration from unknown start locations. The robots
establish a common frame of reference by estimating and verifying their relative loca-
tions using a rendezvous approach. Once they meet, they share a map and coordinate
their exploration. Courtesy of Jonathan Ko and Benson Limketkai.



Figure 17.15 A mobile robot explores an environment with a loop. The robot starts
in the lower right corner of the loop. After traversing it, it decides to follow the pre-
vious trajectory again in order to reduce its uncertainty. Then it continues to explore
the corridor. Courtesy of Cyrill Stachniss, University of Freiburg.
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Figure 17.16 In this situation the robot determines the expected utility of possible
actions. (a) the exploration actions considered by the robot; (b) the expected utility of
each action. Action 1 is selected because it maximizes the expected utility. Courtesy
of Cyrill Stachniss, University of Freiburg.
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Figure 17.17 The evolution of the entropy during the exploration experiment shown
in Figure 17.15. Courtesy of Cyrill Stachniss, University of Freiburg.



