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The reader may notice that this expression is the inverse of our normalization

constant η[k] in (13.27). Further transformations give us the following form:
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We find that this expression can once again be approximated by a Gaussian

over measurements zt by linearizing h . As it is easily shown, the mean of

the resulting Gaussian is ẑt, and its covariance is
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Put differently, the (non-normalized) importance factor of the k-th particle is

given by the following expression:
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As in FastSLAM 1.0, particles generated in Steps 1 and 2, along with their

importance factor calculated in Step 3, are collected in a temporary particle

set.


