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Abstract.

Service robotics 1s currently a pivotal research area in robotics, with enormous
societal potential. Since service robots directly interact with people, finding “natu-
ral” and easy-to-use user interfaces is of fundamental importance. While past work
has predominately focussed on issues such as navigation and manipulation, relatively
few robotic systems are equipped with flexible user interfaces that permit controlling
the robot by “natural” means.

This paper describes a gesture interface for the control of a mobile robot equipped
with a manipulator. The interface uses a camera to track a person and recognize
gestures involving arm motion. A fast, adaptive tracking algorithm enables the robot
to track and follow a person reliably through office environments with changing
lighting conditions. T'wo alternative methods for gesture recognition are compared:
a template based approach and a neural network approach. Both are combined with
the Viterbi algorithm for the recognition of gestures defined through arm motion (in
addition to static arm poses). Results are reported in the context of an interactive
clean-up task, where a person guides the robot to specific locations that need to be
cleaned and instructs the robot to pick up trash.

1. Introduction

The field of robotics is currently undergoing a change. While in the
past, robots were predominately used in factories for purposes such as
manufacturing and transportation, a new generation of “service robots”
has recently begun to emerge (Schraft and Schmierer, 1998). Service
robots cooperate with people, and assist them in their everyday tasks.
Specific examples of commercial service robots include the Helpmate
robot, which has already been deployed at numerous hospitals world-
wide (King and Weiman, 1990), an autonomous cleaning robot that has
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successfuly been deployed in a supermarket during opening hours (En-
dres et al., 1998), and the Robo-Caddy (www.icady.com/homefr.htm),
a robot designed to make life easier by carrying around golf clubs. Few
of these robots can interact with people other than by avoiding them.
In the near future, similar robots are expected to appear in various
branches of entertainment, recreation, health-care, nursing, etc., and it
is expected that they interact closely with people.

This upcoming generation of service robots opens up new research
opportunities. While the issue of robot navigation has been researched
quite extensively (Cox and Wilfong, 1990; Kortenkamp et al., 1998;
Borenstein et al., 1996), considerably little attention has been paid to
issues of human-robot interaction (see Section 5 for a discussion on
related literature). However, many service robots will be operated by
non-expert users, who might not even be capable of operating a com-
puter keyboard. It is therefore essential that these robots be equipped
with “natural” interfaces that facilitate the interaction between robots
and people.

Nevertheless, the need for more effective human-robot interfaces has
well been recognized by the research community. For example, Torrance
developed in his M.S. thesis a natural language interface for teaching
mobile robots names of places in an indoor environment (Torrance,
1994). Due to the lack of a speech recognition system, his interface
still required the user to operate a keyboard; nevertheless, the natural
language component made instructing the robot significantly easier.
More recently Asoh and colleagues developed an interface that inte-
grates a speech recognition system into a phrase-based natural language
interface (Asoh et al., 1997). The authors successfully instructed their
“office-conversant” robot to navigate to office doors and other signif-
icant places in their environment through verbal commands. Among
people, communication often involves more than spoken language. For
example, it is far easier to point to an object than to verbally describe
its exact location. Gestures are an easy way to give geometrical informa-
tion to the robot. Hence, other researchers have proposed vision-based
interfaces that allow people to instruct mobile robots via arm gestures
(see Section 5). For example, both Kortenkamp and colleagues (Ko-
rtenkamp et al., 1996) and Kahn (Kahn, 1996) have developed mobile
robot systems instructed through arm poses. Most previous mobile
robot approaches only recognize static arm poses as gestures, and they
cannot recognize gestures that are defined through specific temporal
patterns, such as waving. Motion gestures, which are commonly used
for communication among people, provide additional freedom in the
design of gestures. In addition, they reduce the chances of accidentally
classifying arm poses as gestures that were not intended as such. Thus,
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they appear better suited for human robot interaction than static pose
gestures alone.

Mobile robot applications of gesture recognition impose several re-
quirements on the system. First of all, the gesture recognition system
needs to be small enough to “fit” on the robot, as processing power is
generally limited. Since both the human and the robot may be moving
while a gesture is shown, the system may not assume a static back-
ground or a fixed location of the camera or the human who performs
a gesture. In fact, some tasks may involve following a person around,
in which case the robot must be able to recognize gestures while it
tracks a person and adapt to possibly drastic changes in lighting con-
ditions. Additionally, the system must work at an acceptable speed.
Naturally, one would want that a ‘Stop’ gesture would immediately
halt the robot—and not five seconds later. These requirements must
be taken into consideration when designing the system.

This paper presents a vision-based interface that has been designed
to instruct a mobile robot through both pose and motion gestures
(Waldherr et al., 1998). At the lowest level, an adaptive dual-color
tracking algorithm enables the robot to track and, follow a person
around at speeds of up to 30 cm per second while avoiding collisions
with obstacles. This tracking algorithm quickly adapts to different
lighting conditions, while segmenting the image to find the person’s
position relative to the center of the image, and using a pan/tilt unit
to keep the person centered. Gestures are recognized in two phases:
In the first, individual camera images are mapped into a vector that
specifies likelihood for individual poses. We compare two different ap-
proaches, one based on neural networks, and one that uses a graphical
correlation-based template matcher. In the second phase, the Viterbi
algorithm is employed to dynamically match the stream of image data
with pre-defined temporal gesture templates.

The work reported here goes beyond the design of the gesture in-
terface. One of the goals of this research is to investigate the usability
of gesture interface in the context of a realistic service robot appli-
cation. The interface was therefore integrated into our existing robot
navigation and control software. The task of the robot is motivated
by the “clean-up-the-office” task at the 1994 mobile robot competition
(Simmons, 1995). There, a robot had to autonomously search an office
for objects scattered at the floor, and to deposit them in nearby trash
bins. Our task differs in that we want a human to guide the robot to
the trash, instructed with gestures. The robot should than pick up the
trash and carry it and dump it into a trash bin.

The remainder of the paper is organized as follows. Section 2 de-
scribes our approach to visual servoing, followed by the main gesture
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recognition algorithm described in Section 3. Experimental results are
discussed in Section 4. Finally, the paper is concluded by a discussion
of related work (Section 5) and a general discussion (Section 6).

2. Finding and Tracking People

Finding and tracking people is the core of any vision-based gesture
recognition system. After all, the robot must know where in the image
the person is. Visual tracking of people has been studied extensively
over the past few years (Darrel et al., 1996), (Crowley, 1997), and (Wren
et al., 1997). However, the vast majority of existing approaches as-
sumes that the camera is mounted at a fixed location. Such approaches
typically rely on a static background, so that human motion can be
detected, e.g., through image differencing. In the case of robot-based
gesture recognition, one cannot assume that the background is static.
While the robot tracks and follows people, background and lighting
conditions often change considerably. In addition, processing power on
a robot is usually limited, which imposes an additional burden. As we
will see in this Section, an adaptive color based approach tracking both
face and shirt color appears to be capable of tracking a person under
changing lighting conditions.

Our approach tracks the person based on a combination of two col-
ors, face color and shirt color. Face color as a feature for tracking people
has been used before, leading to remarkably robust face tracking as long
as the lighting conditions do not chance too much (Yang and Waibel,
1995). The advantage of color over more complicated models (e.g., head
motion, facial features (Rowley et al., 1998)) lies in the speed at which
camera images can be processed—a crucial aspect when implemented
on a low-end robotic platform. In our experiments, however, we found
color alone to be insufficient for tracking people using a moving robot,
hence we extend our algorithm to tracking a second color typically
aligned vertically with a person’s face: shirt color. The remainder of
this section describes the basic algorithm, which run at approximately
10Hz on a low-end PC.

2.1. CoLoR FILTERS

Our approach adopts a basic color model commonly used in the face de-
tection and tracking literature. To detect face color, it is advantageous
to assume that camera images are represented in the RGB color space.
More specifically, each pixel in the camera image is represented by a
triplet P = (R, G, B). RGB (implicitly) encodes color, brightness, and



Figure 1. Face-color distribution in chromatic color space. The distribution was
obtained from the person’s face shown in Figure 2(a).

saturation. If two pixels in a camera image, Py and P;, are proportional,

that is
Rp _ Gp, _ Bp (1)
RP2 GP2 BP2 ’
they share the same color but (if Rp, # Rp,) differ in brightness.
Since brightness may vary drastically with the lighting condition, it is
common practice to represent face color in the chromatic color space.
Chromatic colors (Wyszecki and Styles, 1982), also known as pure
colors, are defined by a projection R — R?, where

R
- = 2
""Rt1G+B 2)
and g

Following the approach by Yang et al. in (Yang and Waibel, 1995),
our approach represents the chromatic face color model by a Gaussian
model M = (X, p,, p1y), characterized by the means p, and p,

1 N
Mf’zﬁ;rﬁ (4)

1 N
e =N Zgi (5)
=0
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and the covariance matrix X

== (5. %) ®
where
N
072* = Z(rl ,ur)zv (7)
¥
o= > (g - )’ g
and
N
Tpg = Ogr = Z ((ri = pe)(gi = pg))- (9)

Typically, the color distribution of human face color is centered in a
small area of the chromatic color space, i.e., only a few of all possible
colors actually occur in a human face. Figure 1 shows such a face color
distribution for the person shown in Figure 2(a). The two horizontal
axes represents the r and ¢ values, respectively, and the vertical axis is
the response to a color model. The higher the response, the better the
person’s face matches the color model.

Under the Gaussian model of face color given above, the Maha-
lanobis distance of the ¢’th’s pixels chromatic r and g value is given

by:

) (ri _Hrvgi_ﬂg)T%_l(ri — s Gi = fiy)

friyg:) = (10)

- e
27 |2

Here the superscript © refers to the transpose of a vector.

As noticed above, our approach uses two distinctive colors for track
people: face color and shirt color. Consequently, it employs two separate
color models:

Mface = (Efacev Mrface’ ’ugface) (11)
and
Mshirt = (Eshirtv ’urshirt’ ’ugshirt) (12)

for face and shirt color, respectively. To determine a person’s location
in the image, each pixel is mapped into chromatic color space and the
responses to the face and shirt color filter are computed: frace(ri, 9:)
and fehirt (77, 9i) (see Equation (10)). For the raw camera image in Fig-
ure 2(a) one can see the response to the face color filter in Figure 2(b)
and to the shirt color filter in Figure 2(c). The better the pixel matches



Figure 2. Tracking a person: Raw camera image (a), face-color filtered image (b)
and shirt-color filtered image (c). Projection of the filtered image onto the horizontal
axis (within a search window) (d). Face and shirt center, as used for tracking and
adaptation of the filters (e). Search window, in which the person is expected to be
found in the next image (f).



(c) (d)

Figure 3. This sequence of camera images, recorded in a single run, illustrates the
potential speed and magnitude of changes in lighting conditions, which make gesture
recognition on mobile robots difficult.

our color model, the higher is the response to the color filter and hence
the darker the pixel is in the image.

2.2. ADAPTATION

When the robot moves through its environment (e.g., following a per-
son), the appearance with respect to color changes due to changing
lighting conditions. Figures 3(a) to 3(d) show images that were recorded
while the robot followed a person through a building. Note the different
illumination of the person in the lab and in the hallway. Even under the
same lighting conditions, changes in background colors may influence
face-color appearance. Similarly, if the robot follows the person, the
apparent face color change as the person’s position changes relative to
camera or lighting. Consequently, it is essential for the tracking system
to cope with different lighting conditions.

Our approach adapts the color model on-the-fly. In particular, it
adapts the face model using a leaky integrator (filter with exponential



decay):
Eface = aE?ace + (1 - Oé) Eﬁa_c{e (13)
'u;{face - aM:face + (1 - Oé)'u;{;ilce (14)
'uzface - Oé'u;face + (1 - Oé)'uégalce (15)

The shirt color model is adapted in the same fashion:

Shire = Sk + (1— ) S50, (16)
t _ * _ t—1

'urshirt - aurshirt + (1 a)urshirt (17)

'uéshirt = Oé'u;shirt + (1 o Oé)’u;;hlirt (18)

Here, X7

Faces ,uﬁface and uzface denote values that are obtained from the

. =1 t-1 t—1
most recent image only, whereas 3, Mg o and fge ., Are values of the

model at a previous time-step (same for the face model). The learning
rate a, which we set to 0.1 in all our experiments, determines how
quickly the model adapts to changes in lighting conditions. It deter-
mines the rate at which the system “forgets” information. For example,

after
it =] = = 1)

iterations approximately 50% of the initial filter coefficients are “for-
gotten”. Thus, a trades off the algorithm’s ability to rapidly adapt to
new situations (« close to 1) with the ability to memorize past color
observations (« close to 0). In our experiments reported below, we
found that adapting the color models is absolutely crucial for robustly
tracking a person with a moving camera.

2.3. FINDING PEOPLE

Our approach also detects people to learn an initial color mode and
initiate the tracking. This is achieved through a generic face color model
Mftace, which is a high-variance model that accommodated a range of
“typical” face colors. to be tracked by the robot, a person has to present
herself in the center of the robot’s cameras. When the robot is not
tracking a specific person, it constantly screens a fixed, central region in
the image. Once a region with face color has found, which is detected by
applying a fixed threshold to the face color filter response in the target
area, the face’s center is assumed be the centroid of the face color
in the region. The initial means of the face model, the means p,, u,
and covariance X, is then obtained from a small region surrounding the
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estimated face center, according to Equations (4), (5), and (6) Similarly,
the shirt color model is initialized using pixels in a small, rectangular
image region at a fixed distance under the face. The location of this
rectangular image region corresponds to a region 50cm below a person’s
face center under the assumption that the person’s distance to the robot
is approximately 2.5 meter. Due to the size of shirts, we found the
placement of this rectangular region to be very robust to variations in
people’s heights and distance to the robot’s camera. Thus, in practice a
person has to present himself in the center of the robot’s camera image.
This is only necessary in the initial step; during tracking, the person’s
relative position in the camera’s field of view is unconstrained.

Examples of both windows Wiyee and Wiy are depicted in Fig-
ure 2(e). Note that no previous knowledge about the person’s shirt
color is necessary in order to find the person. The system acquires
its initial shirt color model based on a region below the face. Thus,
it can locate and track people with arbitrary shirt colors, as long as
they are sufficiently coherent, and as long as they are vertically aligned.
While uni-color shirts work best, the approach can also cope with multi-
colored shirts, in which its adaptive color model tends to specialize on
one of the colors—with some degradation in performance.

2.4. TRACKING PEOPLE

In the initial task of finding the person, the center of the face and
then the center of the shirt are determined. However, treating each
filter response independently in order to track the person is not as
advantageous as combining the responses of both filters. Consequently,
it is still possible to track the person even if the response of one filter
is not as good as expected.

The locating of a person in the image is now performed in two steps:
In the first step, the horizontal coordinates of the person in the image
is determined. Secondly, the person’s vertical coordinate, that is the
vertical center of the face and shirt, are determined.

More specifically, in the first phase our system searches for co-
occurrences of vertically aligned face and shirt color. This step rests
on the assumption that the face is always located above a person’s
shirt. The color filter’s response is summed horizontally over m neigh-
bors, and the average over an entire column is computed. Figure 2(d)
shows the resulting two vectors, which are expanded vertically (for the
reader’s convenience). The grey-level in the two regions Sgace and Sepirt
ggraphically indicates the horizontal density of face and shirt color,
respectively. The darker the pixel, the better the match. Finally, both
vectors are multiplied component-wise. To determine the estimated
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(b)

Figure 4. Example gestures: ‘Stop’ gesture (a) and ‘Follow’ gesture (b). While the
‘Stop’ gesture is a static gesture, the ‘Follow’ gesture involves motion, as indicated
by the arrows.

horizontal coordinate of the person, the maximum value of this product
is determined and its index is taken as the person’s x coordinate.

The remaining problem of finding the vertical coordinates of face
and shirt is now a search in a one-dimensional space. Here our algo-
rithm simply returns (after local smoothing) the location of the highest
response, subject to the condition that the face must be above the shirt
(and not below).

To decrease the amount of computation per image, the search is
restricted to a small window centered around the position where the
person was previously observed. Since our approach tracks two colors,
two search windows are constructed around the person’s face and body:
Stace and Sghire. Examples of these windows are shown in Figure 2(f).

3. Gesture Recognition

The primary goal of this research is develop and evaluate a vision-based
interface that is capable of recognizing both pose gestures and motion
gestures. Pose gestures involve a static configuration of a person’s arm,
such as the ‘Stop’ gesture shown in Figure 4(a), whereas motion ges-
tures are defined through specific motion patterns of the arm, such as
the ‘Follow’ gesture shown in Figure 4(b).

The recognition of gestures is carried out in two phases. In the first
phase, arm poses are extracted from individual camera images. We will
refer to this process as pose analysis. In the second phase, temporal
sequences of arm poses are analyzed for the occurrence of a gesture.
This process will be referred to temporal template matching.



12

Figure 5. Examples of pose templates. The excitatory region is shown in black and
the inhibitory in grey. White regions are not considered in the matching process.

3.1. PosE ANALYSIS

Our approach uses two different methods for pose analysis: Neural
networks and correlation-based template matching. The use of two
methods, instead of one, is motivated by our desire to understand the
relative benefits of either approach. Further below, in Section 4.4, we
will present empirical results comparing both approaches.

Both approaches have in common that they operate on a color-
filtered sub-region of the image which contains the person’s right side,
as determined by the tracking module. In other words, they rely on
the tracking module to segment the image. Their input is a section
of the image which contains the right upper side of a person’s body,
computed using the coordinates obtained when tracking the person.
Both approaches also have in common that they output a probability
distribution over arm poses. They differ in the way the segmented image
is mapped to a probability distribution.

3.1.1. Graphical Template Matcher

The graphical template matcher (also called: pose template matcher)
compares images to a set of pre-recorded templates of arm poses, called
pose templates. More specifically, the color-filtered image is correlated
with a set of R pre-recorded templates of arm poses. Each pose template
T consists of two regions: an excitatory region, which specifies where
the arm is to be expected for a specific pose, and an inhibitory region,
where the arm should not be for this pose.

Figure 5 shows examples of pose templates. Here excitatory regions
are shown in black, and inhibitory regions are shown in grey. The
templates are constructed from labeled examples of human arm poses
(one per template), where the excitatory region is extracted from the
largest coherent region in the filtered image segment, and a simple
geometric routine is employed to determine a nearby inhibitory region.
Consequently, a pixel p € T can have the following values

+1 Excitatory region
p =< —1 Inhibitory region (20)
0 Irrelevant
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The correlation o1 between a pose template T and the response I to
shirt color model is defined by the correlation coefficient

0TI

= 21
ori =" (21)
and is computed as follows:
> (= pr) (pr— )
T
o1 = —== (22)
Y (= p1)? Y (o1 — pr)?
peT peT

where py denotes a pixel in the filter response with the same coordinates
as the pixel p in the pose template. The means pt and pp are only
computed in the area of the pose template. In regions where we expect
the response of the shirt color model to be high, the value of a pixel
in the pose template is one. In inhibitory regions (value is —1), on the
other hand, the response of the shirt color model to expected to be low.
Note that the terms (p — 1) in the numerator and 3 cp ,20(p— pr)?
in the denominator only have to be determined once, whereas all other
computations have to be made for each camera frame.

The result of correlating the image segment with R pre-recorded
templates is a correlation vector, or feature vector, of R components—
one for each pose template as depicted in Figure 6. An example is
shown in the center of Figure 6. Here a component of the vector is
represented by a square whose size is associated with the magnitude
and whose color indicates the sign (black is negative, white is positive;
this example happens to be non-negative). For each new image frame,
the feature vector is computed as described above. These feature vectors
form the basis of the temporal template matching.

3.1.2. The Neural Network-Based Method

Alternatively, one might use an artificial neural network to recognize
poses. The neural network-based approach predicts the angles of the
two arm segments relative to the person’s right side from the image
segment. The input to the network is the image segment, down-sampled
to a 10 by 10 matrix (Figure 8). The output corresponds to the angles
of the arm segments, encoded using multi-unit Gaussian representa-
tions (Figure 7), just like in Pomerleau’s ALVINN (Pomerleau, 1993).
More specifically, the Gaussian output encoding uses multiple units to
encode a single scalar value, by generating Gaussian-like activations
over the array of output units. Like Pomerleau, we found that those
representations gave the best results among several ones that we tried
during the course of this research.
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Figure 6. The pose template matching process between the response of the shirt
color model and each of the arm-position templates in the database.

In our implementation, the network was trained using Backpropa-
gation (Rumelhart et al., 1986), using a database of 1708 hand-labeled
training images. Training labels consisted of the two angles of the two
arm segments relative to the image plane, which were specified using a
graphical interface in less than an hour.

In our implementation, the neural network possesses 60 output units,
30 of which encode the angle between the arm upper segment (angle «)
and the vertical axis, and 30 measure the angle between the arm lower
segment (angle ) and the horizontal axis. Both values are encoded
using Gaussians. As an example, Figure 7 shows two different angles:
Anglel = 124° and Angle2 = 224° encoded through the following

Gaussian function:
—c*dl2

Yy =€

angle
360

where ¢ is a constant (¢ = 50 in our experiments), d; =
t=0,1,...,29 and angle € R.

Figure 8 shows an example of the network’s input, output, and target
values. The input is a down-sampled, color-filtered image of size 10 by
10. The output is Gauss-encoded. The nearness of the outputs (first

1
- 55 for
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Figure 7. Gaussian output encoding for a pair of angles.

and third row) and the targets (second and forth row) suggests that in
this example, the network predicts both angles with high accuracy.

Figure 9 shows a filtered example image. Superimposed here are the
two angle estimates, as generated by the neural network.

To recover the angle estimates from the Gaussian encoding, the
network’s output is converted into two angles by fitting Gaussians to
the network’s output units as described in (Pomerleau, 1993). More
specifically, for both sets of 30 output units our approach determines
the best fitting fixed-variance Gaussian:

a = argomin{3; [y, —e 2 |}

The network’s average error for the angles o and 3, measured on an
independent set of 569 testing images, is shown in Table 1. In these ex-
periments, three different network topologies were tested, using vanilla
Backpropagation and a learning rate of 0.025 (which was empirically
determined to work best).

Both pose analysis methods, the neural network-based method and
the pose template matcher, generate multi-dimensional feature vectors,
one per image. To make sure both methods adhere to the same output
format—which will be essential for the empirical comparison, the net-
work output is transformed analytically into the output format of the
template-based algorithms. Recall that our template matcher uses 16
different pose templates (c.f., Section 3.1.1) and Figure 6). To obtain
the same representation for the neural network-based technique, a vec-
tor of 16 components is constructed where each component corresponds
to the Euclidean distance between the pair of angles generated by
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Figure 8. The input to the neural network, a down-sampled, color-filtered image of
size 10 by 10, and the outputs and targets of the network for the two angles.

network’s output and a pair of angles of the pose template (Figure
9). This “trick” enables us to compare the graphical template matcher
and the neural network-based approach empirically, as described below.

3.2. TEMPORAL TEMPLATE MATCHING

The temporal template matcher integrates multiple camera images, to
detect gestures defined through sequences of arm poses (static and
dynamic). It compares the stream of feature vectors with a set of
prototypes, or gesture templates, of individual gestures that have been
previously recorded. Figure 10 shows examples of gesture templates,
for the gestures ‘Stop” (Figure 4(a)) and ‘Follow’ (Figure 4(b)). Each
of these templates is a sequence of prototype feature vectors, where
time is arranged vertically.

As can be seen in this figure, the ‘Stop’ gesture is a pose ges-
ture (hence all feature vectors look alike), whereas the ‘Follow’ ges-
ture involves motion. OQur approach treats both types of gestures the
same. Both types of gestures—pose gestures and motion gestures—are
encoded through such temporal templates.

To teach the robot a new gesture, the person presents itself in front of
the robot and executes a gesture several times (e.g., five times), in pre-
specified time intervals. Our approach then segments these examples
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(o1,81)  (e2.82) (asz,03) (16, B16)

(O‘vﬁ)

Figure 9. The angles matching process between the response of the shirt color model
and each pair of angles of the arm-position templates in the database.

into pieces of equal length, and uses the average feature vector in each
time segment as a prototype segment. Figure 11 shows the segmentation
process—for simplicity the figure only depicts one training example.
Note that this process compresses an observed gesture by a factor of
four: For example, a gesture that lasted 60 frames is represented by 15
feature vectors.

To compensate differences in the exact timing when a person per-
forms a gesture, our approach uses the Viterbi algorithm for time
alignment. The Viterbi alignment, commonly used in the context of
Hidden Markov Models (Rabiner and Juang, 1986), employs dynamic
programming to find the best temporal alignment between the feature
vector sequence and the gesture template. It has become highly popular
in the speech recognition community (cf. (Waibel and Lee, 1990)), since
it compensates for variations in the timing of spoken language (and
gestures).

In our approach, the Viterbi algorithm continuously analyzes the
stream of incoming feature vectors for the possible presence of gestures.
It does this by aligning the observation stream o with each gesture
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Table I. Average error obtained by neural network in the
testing data

Topology Upper arm segment  Lower arm segment
100-200-60 4.85° 5.24°
100-100-60 4.73° 5.46°
100- 50-60 4.96° 5.56°

template p (of size N, i.e., it contains N compressed feature vectors)
using a matrix (e)y ;.

The matrix (e)g; is of size T' x N, and is computed from the top
left to the bottom right as follows:

|lox — pjl| k=0nj=0,
€kj—1 ICIO/\]'#O7
ek = €1, 1 [lox — pyl| k#0Aj=0, (23)
€k, j—1 er,j—1 < €x—1,; + |[ox — pjll,

ex—1,; + |lox — pjl|

ek,j-1 > €x—1,; + |[ox — pjll-

This dynamic programming equation computes the likelihood of a ges-
ture under optimal time alignment: Consequently, the final element
er,n determines the sequence’s likelihood conditioned on the gesture
template. Our approaches uses the Euclidean distance to compute the
difference ||or, — p;|| between a feature vector of the observation and a
feature vector of the gesture template.

To summarize, time variations in gesture template matching are
accommodated using the Viterbi algorithm. This algorithm aligns the
actual observation sequence and the templates optimally, compensating
variations in the exact timing of a gesture. The Viterbi algorithm also
determines the likelihood of observing this sequence under each gesture
template, which is essential for classification of gestures.

4. Experimental Results

Our approach has been implemented on a mobile robot and evaluated in
a series of experiments. It also has been integrated into an autonomous
robot navigation system, to test its utility in the context of a realistic
service robotics task.

The central question underlying our experiments are:

Robustness: How robust is the system to variations in lighting
conditions, differences in people’s individual motion, different shirt
colors, and so on?
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(a) (b)

Figure 10. Examples of gesture templates. Gesture templates are sequences of pro-
totype feature vectors. Shown here are gesture templates for (a) a ‘Stop’ gesture
(does not involve motion), (b) a ‘Follow’ gesture (involves motion, as indicated by
the change over time).

— Usability: How usable is the interface, specifically when used to
control a robot in the context of a service task?

Th experimental results presented in this section address these ques-
tions systematically. For the reader’s convenience, the section is broken
down into three parts:

1. Tracking: Results are presented for the performance of the people
tracker, obtained while following a person through an office build-
ing with rooms and hallways. The environment is characterized by
drastically varying lighting conditions.

2. Gesture Recognition: A comparative experiment evaluating both
approaches to gesture recognition is presented. Additional experi-
ments investigate the utility of dynamic motion gestures, in com-
parison to static pose gestures.

3. Integration: Results are reported obtained in the context of a
clean-up task, aimed to elucidate the usefulness of our gesture inter-
face in the context of a realistic service robotics task. The clean-up
task involves human-robot interaction and mobile manipulation,
and shows that our interface can recognize dynamic gestures and
responds to them through corresponding actions.

The robot used in our research, AMELIA (Figure 13), is a RWI B21
robot equipped with a color camera mounted on a pan-tilt unit, 24 sonar
sensors, and a 180° SICK laser range finder. To evaluate the utility
of gesture recognition in a real world scenario, it has been integrated
into the robot navigation and control software BeeSoft, developed in
conjunction with the University of Bonn and RWI (Thrun et al., 1998).
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Figure 11. Creating a gesture template by example: a stream of observed feature
vectors on the left is compressed into the gesture template on the right.

4.1. IMPLEMENTATION DETAILS

Our approach was implemented on a low-end PC (Intel 200 MHz Pen-
tium with 64MB main memory), grabbing images at a rate of 30 fps
and a resolution of 320 x 240 pixels. The major computational bottle-
neck is the filtering of the image using the Gaussian filters, and the
pose analysis (template matching, neural networks). By focusing the
computation of the response to the color models to a narrow window
around the person, a performance of roughly 10 frames per second was
obtained. Furthermore, the Gaussian responses were only computed
for every second pixel horizontally and vertically, dividing the compu-
tational effort by a factor of four. Adapting the covariances and means
in the regions Wiice and Wipnie, both of fixed size, does not pose a
computational problem since both windows are relatively small.
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Figure 12. Aligning the last T observations with a gesture template. Shown on
the left are the last T' feature vectors that are temporally aligned, using the ma-
trix (e)x,;, with the gesture template (shown on the top right, rotated 90 degrees
counterclockwise).

To cope with slightly different gestures of the same kind, our system
uses multiple prototypes for each gestures (2 to 5 per gesture). The
time alignment is performed at multiple time scales, each of which
corresponded to a specific, assumed total duration of a gesture. The
observed feature vectors are constantly analyzed and aligned to a set
of gesture templates using the Viterbi algorithm, as described in Sec-
tion 3.2. A gesture is detected whenever the result e of the alignment
surpasses a certain, pre-specified threshold.

We trained our system to recognize four different gestures:

Stop: The ‘Stop’ gesture is shown in Figure 14(b). This gesture is a
static gesture: Moving the arm into the right position for about a
second is sufficient to trigger the stop command.
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Figure 18. Amelia, the robot used in our experiments.

Follow: The ‘Follow’ gesture involves a wave-like motion, moving the
arm up and down as shown in Figures 14(d) and (e).

Pointing Vertical: This gesture is also a motion gesture. Starting
from the initial arm position depicted in Figure 14(a), the person
moves the arm up to the position shown in Figure 14(f), holds it
there for a brief moment, and returns to the initial arm position.

Pointing Low: Again, starting in the initial arm position of Figure 14(a),

the person points to an object on the floor, as shown in Fig-
ure 14(e), and returns to the initial arm position.

The choice of gestures was motivated by the particular service task
described further below.

4.2. TRACKING

We measured the performance of the people tracker by instructing the
robot to follow a person through our environment. An experiment was
judged to be successful if the robot managed to track (and follow)
the person for 20 meters or more, during which it processed close
to 1,000 camera images. The testing environment contains a brightly
illuminated lab, and a corridor with low-hanging ceiling lights that have
a strong effect on the brightness of a person’s face.

We conducted more than 250 experiments involving four subjects
with a range of different shirts (see below), many of which during
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(d) (e) (f)
Figure 14. Images of arm positions that are contained in the five example gestures.

Fach image marks a specific point in time — for example the start, middle or end
position of a motion gesture.

system development and demonstrations. In a subset of 82 final ex-
periments carried out after the software development was completed
using the same four subjects, we measured a success rate of 95%. An
experiment was labeled a success if the robot never lost track of the
person. Our results indicate an extremely low per-frame error rate,
since a single recognition error typically leads to an overall failure of the
tracking module. The identical software (and parameters) was used in
each of the tests, regardless of the subject or his/her shirt color. In our
experiments, the subjects wore shirts with different colors, including
gray, red, green, light blue, white, and black. It comes at little surprise
that brightly colored shirts maximize the reliability of the tracking
algorithm. The majority of failures were observed for white and black
shirts, which are the most difficult colors to track. Here the failure
rate was approximately 12%. Due to limited range of CCD cameras,
dark regions in the background (e.g., shades) are often perceived as
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Figure 15. Tracking of the person and pose analysis. Shown here are the search
and adaptation windows. Additionally, the pose template whose component in the
feature vector has the highest correlation is superimposed on the person.

pitch black, whereas bright spots (ceiling lights, direct sunlight) usu-
ally appear white in the image. Nevertheless, the combination of two
colors—face and shirt—and the ability to adapt quickly to new lighting
conditions made failures rare even for black or white shirts.

Figure 15 shows an example, recorded when tracking a person with
a dark shirt. Shown there are the estimated centers of the face and the
shirt (small rectangles), along with the location of the search windows
(large rectangles). The most likely template is superimposed. Here the
person is in the midst of carrying out a ‘Pointing low’ gesture.

4.3. SINGLE IMAGE (GESTURE RECOGNITION

We first evaluated static gestures, recognized from a single camera
image. The goal of this experiment was to characterize the accuracy
of gesture recognition in the extreme case, where only a single image
is available—to set the base line for our subsequent analysis of gesture
recognition from image streams. The single-image recognition applies
our pose template matcher, but does not use Viterbi to match tem-
poral gesture prototypes. Instead, a gesture is recognized when the
probability of a specific gesture surpasses a pre-selected (optimized)
threshold. Obviously, the natural variance in images affects the classi-
fication rate much more than in the multi-image case, where individual
image variations have a much lesser effect (and thus yield more accurate
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recognition). Figure 15 shows an example pose template superimposed
on the person,s image.

In a systematic experiment involving 507 camera images, we found
that the correct pose was identified in 85% of the cases; in 10% a nearby
pose was recognized, and in only 5% the pose template matcher pro-
duced an answer that was wrong. While these results are encouraging,
they can be improved by considering a stream of camera images over
time (as shown below).

The misclassifications were exclusively due to variations in the im-
age (e.g., when lighting changes mandated an adaptation of the color
filters). In a real-world application, it could easily happen that a person
moves its arm into a gesture-type position without intending to per-
form a gesture. Such incidents undoubtedly would further increase the
misclassification rate, making it questionable if a single-image gesture
recognizer is sufficiently robust for real-world applications. In the next
section, we will report results for dynamic gesture recognition from
multiple images, illustrating that the latter provides much better results
than the static, single-image approach.

4.4, (GESTURE RECOGNITION

The evaluation of gestures from sequences of camera images is more in-
teresting. Here gestures may be static or dynamic—both are recognized
form a sequence of images using the Viterbi algorithm. In this section,
we report results for the temporal gesture recognition system, includ-
ing a comparison of the two different methods for pose analysis: the
graphical template matcher and the neural network-based approach.

We evaluated both approaches using a database of 241 image se-
quences. In 191 of these sequences, the person performed one of the
four gestures defined above. In the remaining 50 sequences, no gesture
was performed. To test the robustness of the system in the extreme,
more than half of these sequences were collected while the robot was
in motion. In both sets of experiments, the recognition threshold was
hand-tuned beforehand using a separate data set. Since false-positives
(the robot recognizes a gesture that was not shown by the instructor)
are generally worse than false-negatives (the robot fails to recognize a
gesture), we tuned our thresholds in such a way that the number of
false-positives was small.

Tables 11 and III show the recognition accuracy obtained for the
graphical template matcher and the neural network approach, respec-
tively. Overall, both approaches—the neural network based approach
and the pose template matcher—classified 97% of the examples cor-
rectly. Both erred in 7 of the 241 testing sequences. The template
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Table II. Recognition results for the pose template matcher.

Gestures recognized
Stop  Follow  Point.Vert Point.Low No Gesture
Gestures given | 241 || 39 59 45 42 56
Stop 40 39 - 1 - -
Follow 59 - 59 - - -
Point. Vert 50 - - 44 - 6
Point.Low 42 - - - 42 -
No Gesture 50 50

matcher’s most prominent error was a failure to recognize ‘Pointing
Vertical’ gesture, which we attribute to a poor set of motion templates
for this gesture. The neural network’s poorest gesture was the ‘Follow’
gesture, which sometimes was detected accidentally when the person
gave no other gesture, and sometimes was mistaken for a ‘Pointing Low’
gesture. The different failures of both approaches suggest that combin-
ing both—template matching and neural networks—should yield better
results than either approach in isolation. However, a combined ap-
proach increases the computational complexity, reducing the frequency
at which images are analyzed. Since near-frame-rate is essential for
successful tracking, we decided not to integrate both approaches.

As an example, Figure 16 shows the recognition results for three
different classes of gestures: ‘Stop’, ‘Follow’ and ‘Pointing’, for one of
the testing sequences. Here the horizontal axis depicts time (frame num-
ber), while the vertical axis shows the probability estimate of each ges-
ture template. While the ‘Stop’ class contains three different templates
(dstopl, dstop2 and dstop3), both the ‘Follow’ and ‘Pointing’ class
contain only two templates. The system recognized a ‘Stop’ gesture at
point (a) and ‘Follow’ gesture at point (b).

Figure 17 shows the output of the pose template matcher over time,
for a subset of the image sequence (frames ¢t = 400 to ¢t = 508). This
figure should be compared to Figure 10, which depicts a prototype
template for the ‘Stop’ gesture, and one for the ‘Follow’ gesture. The
‘Follow’ gesture, which is executed in this subsequence, is correctly
detected.

4.5. CLEAN-UP TASK

The final experiment evaluates the gesture recognition interface in the
context of a realistic, real-world service robot task. The task we chose
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Table II1. Recognition results for the neural network-based algorithm.

Gestures recognized
Stop  Follow  Point.Vert Point.Low No Gesture
Gestures given | 241 || 39 59 50 45 48
Stop 40 39 - - - 1
Follow 59 - 56 - 3 -
Point. Vert 50 - - 50 - -
Point.Low 42 - - - 42 -
No Gesture 50 - 3 - - 47

was motivated by the “clean-up an office” task, designed for the AAAI-
94 mobile robot competition (Simmons, 1995), in which an autonomous
robot was asked to locate and retrieve trash items scattered around an
office-like environment (various subsequent competitions had similar
themes). Our scenario differs in that a human interacts with the robot
and initiates the clean-up task, which is then performed autonomously
by the robot. The particular task at hand involved a human instructing
a robot, through gestures, to follow him to the location of trash. The
robot then picks the trash up and delivers it to a nearby trash bin.

In detail, the clean-up task involves the following gesture operations:

— perform a following gesture to initiate the follow behavior,
— perform direct motion commands, e.g., stopping the robot,
— guide the robot to places which it can memorize,

— point to objects on the floor, and

— initiate clean-up tasks, in which the robot searches for trash, picks
it up, and delivers it to the nearest trash-bin.

If the robot is shown a ‘Stop’ gesture, it immediately stops. If the person
points towards an object on the ground, the robot starts searching
for an object within its visual field. If the robot succeeds, it moves
towards the object, picks the object up, and then returns to the nearest
trash-bin. The location of trash-bins is known to the robot.

To perform a task of this complexity, the gesture interface was inte-
grated into the BeeSoft robot control architecture, previously developed
at our lab in collaboration with Real World Interface Inc (now a division
of IS Robotics) (Thrun et al., 1998). In a nutshell, our navigation sys-
tem enables robots to navigate safely while acquiring maps of unknown
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Figure 16. Results er y of the matching process over time, normalized to the length
of each template. The system recognized a ‘Stop’ gesture at point (a) and ‘Follow’
gesture at point (b)

environments. A fast motion planner allows robots to move from point
to point or, alternatively, to explore unknown terrain. Collisions with
unexpected obstacles are avoided by a fast, reactive routine, which sets
the velocity and travel direction of the robot according to periodic
measurements of the robot’s various proximity sensors (laser, sonar,
infrared, tactile). While the robot is in motion, a probabilistic local-
ization method continuously tracks the robot’s position, by comparing
sensor readings with the learned map of the environment. Permanent
blockages lead to modifications of the map, and thus to new motion
plans.

Our previous approach has been demonstrated to let robots navigate
safely with speed of more than 150 centimeter per second, through
densely populated environments. Previous versions of the software won
a second, and a first, price at the 1994, and 1996, AAAI mobile robot
competitions, respectively. Most recently, our software was the back-
bone of two “interactive robotic tour-guides” (Rhino and Minerva),
which were successfully installed in the Deutsches Museum Bonn (Ger-
many) (Burgard et al., 1999) and in the Smithsonian’s National Mu-
seum of American History in Washington, DC (Thrun et al., 1999). The
robots successfully gave tours to thousand of visitors, at an average
speed of over 30 centimeter per second.
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Figure 17. Example of a feature vector stream that contains a ‘Follow’ gesture. The
arrow indicates the point in time at which ‘Follow’ was recognized (see Figure 16).
One of the gesture templates used in the matching is depicted in Figure 10(b), the
output of the temporal template matcher is shown in Figure 16.

One of the primary deficiencies of our previous system was a lack
of a natural human-robot interface. To instruct the robot, we basically
had to program it by hand. This is of course not really acceptable for
service robots, since many of them will necessarily be instructed and
operated by non-expert users. Thus, the new gesture based interface,
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Figure 18. Map of the robot’s operational range (80x25 meters) with trace of a
specific example of a successful clean-up operation. The robot waited in the corridor,
was then guided by a human into a lab, where it picked up a can and later deposited
it into a trash-bin.

in combination with our navigation methods, provides a new level of
usability to our overall system.

4.6. INTEGRATION RESULTS

Figure 18 shows an example run, in which Amelia is instructed to
pick up a soda can. Shown there is a map of the robot’s environment,
constructed using an occupancy grid technique (Elfes, 1989; Moravec,
1988; Thrun, 1998), along with the actual path of the robot and the
(known) location of the trash-bin.

In this example, the robot initially waits in the corridor for a per-
son. The person instructs the robot to follow him into the lab using
the ‘Follow’ gesture. The robot follows the person at a speed of no
more than 25cm/sec, simultaneously avoiding collisions with nearby
obstacles. In the lab, the person stops the robot by invoking the ‘Stop’
gesture. Within a second, the gesture is recognized and the robot stops.
If there is trash nearby, the person now points at a piece of trash (a soda
can) on the floor. The robot then uses its visual routines (Margaritis
and Thrun, 1998) to determine the exact location of the soda can. It
then deploys its manipulator, navigates to the soda can, picks it up,
and navigates back to the corridor where the trash is deposited into
the trash-bin. The task was conveniently encoded using a finite state
automaton.

Our gesture interface worked extremely reliably. In 9 tests of the full
clean-up tasks, we did not observe a single failure. In our subjective
judgment, we also found the interface easy to use. Operating the robot
at low speed (25 cm per second) made it easier to instruct the robot,
since it gave the person more time to perform the ‘Stop’ gesture while
the robot was in motion. Tests at higher speeds (45 cm per second)
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made it difficult to reliably position the robot close to a soda can,
even though our approach can flawlessly manage this speed. Obviously,
the person must know the gestures in advance. However, the gestures
were similar to those used for communication between humans (e.g., in
heavy-noise environment such as airports), making is easy for people
to learn the gestures or, alternatively, teach the robot a new set of
gestures. Thus, our overall assessment of the clean-up task is that the
gesture based interface provides a flexible and easy-to-use interface for
the command and control of mobile service robots.

4.7. FAILURE MODES

While the overall performance of the gesture interface is encouraging,
the reader should notice that it also possesses limitations that, if not
met, lead to the failure of the gesture interface. In particular:

— The tracking algorithm assumes that the person’s face is visible at
all times. This is unproblematic when a person is interacting with
a non-moving robot. When being followed by a robot, however,
our current interface makes it necessary that the person walks
backwards. More sophisticated tracking algorithms are necessary
to cope with people not facing the robot. For example, a track-
ing algorithm might simultaneously learn a model of a person’s
hair color, so that tracking can be continued when a person turns
around.

— The current gesture interface is not scaling invariant. Due to the
extremely limited computational power on a mobile robot, the
size of the image and that of the template is fixed. As a result,
the person has to stay within a constant distance to the robot
(currently between 2 to 3 meters). The recognition rate drops when
the distance to the robot is too small or too high. This limitation
could be overcome by automatically scaling the gesture templates
or by using a motorized zoom lens. A person’s distance is easily
recognized using the robot’s proximity sensors.

— We do not expect the interface to be sufficiently robust to func-
tion in dense crowds, such as the ones Rhino and Minerva faced
in their museums. This is because of the difficulty of tracking
people in crowds, where many similar-looking faces might con-
fuse the tracking routine. Recent progress of head tracking with
occlusion (MacCormick and Blake, 1999) might provide an answer.
However, testing the interface in such situations is beyond of the
scope of the current paper.
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5. Related Work

The idea of using gestures to instruct a mobile robot is not new.

In (Huber and Kortenkamp, 1995) and (Kortenkamp et al., 1996)
Kortenkamp et al. describe a system that uses stereo vision and optical
flow to model people and recognize gestures. The system is capable
of recognizing up to six distinct pose gestures such as pointing and
hand signals and then interprets these gestures within the context of
an intelligent agent architecture.

Gestures are recognized by modeling the person’s head, shoulders,
elbows, and hands as a set of proximity spaces. Each proximity space is
a small region in the scene measuring stereo disparity and motion. The
proximity spaces are connected with joints/links that constrain their
position relative to each other. The robot recognizes pose gestures by
examining the angles between links that connect the proximity spaces.
Confidence in a gesture is build up logarithmically over time as the
angles stay within limits for the gesture.

In comparison, the gesture recognition system of Kortenkamp et al.
runs completely on-board the robot, just like ours. We are also bound to
asingle camera and do neither use stereo vision nor any dedicated vision
hardware to process the camera images. While these issues are only
differences in the physical setup of the system, our approach has a key
difference that it can recognize motion gestures, whereas Kortenkamp’s
approach relies on static gestures that do not involve motion.

Both systems have a high level control architecture. Qur approach
uses the BeeSoft, Kortenkamp et al. have integrated their system into
Firby’s Reactive Action Package (RAP) ((Firby, 1994)). The RAP sys-
tem takes into consideration the robot’s task, its current state and the
state of the world and then selects a set of skills that should run to
accomplish the tasks. Kortenkamp et al. have also extended their work
to recognize people’s faces on a mobile robot architecture (Wong et al.,
1995).

The Perseus system (Kahn, 1996), (Kahn et al., 1996), (Firby et al.,
1995), specifically addresses the task of recognizing pointing gestures. It
is capable of finding objects that people point to. Perseus uses a variety
of techniques, including feature maps (such as intensity feature maps,
edge feature maps, motion feature maps, etc.), to reliably solve this
visual problem in non-engineered worlds. Perseus provides interfaces for
symbolic higher level systems like the RAP reactive execution system
mentioned before.

Perseus has also been applied to an object pickup task. The first part
of the task requires recognizing if and where a person is in the scene.
Perseus assumes that people are the only moving objects in the scene.
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Hence motion can be used to segment the person from the background.
Once the image is segmented, the color of the clothing is known and
may be used for tracking the person in the future. Knowledge about
the task and environment is used at all stages of processing to best
interpret the scene for the current situation. Next the important parts
of his body, such as the hands and head, are found and tracked. By
fusing the abovementioned feature maps, Perseus is able to reliably
track parts of the body. A pointing gesture is recognized if the person’s
arm has moved to the side of the body and remained stationary for a
short time. After the person points, the position of the head and hand
is used to determine which area is pointed to. This area is searched for
an object.

Perseus is also described in (Franklin et al., 1996) in the context of
building a robot ‘waiter’. In this task, Perseus has been extended to
recognize a ‘reach’ gesture (similar to a pointing gesture) of the person’s
arm. The person’s hand may or may not contain a soda can. Depending
on this information and the current context, the robot either delivers
a soda can to the person or receives a soda can from the person.

Unlike our approach, Perseus is restricted to the domain of recog-
nizing pointing gestures. These gestures are static configuration of the
person’s arm and do not include motion gestures. Like our system,
Perseus is not only able to detect pointing gestures, but also capable of
identifying the object pointed to. While our approach uses only color
information for the same task, Perseus uses multiple independent types
of information, among them intensity feature maps and disparity fea-
ture maps. Since Perseus does not model the person’s arm as a whole,
the distance between robot and person may vary.

Boehme an colleagues (Boehme et al., 1998a; Boehme et al., 1998b)
have developed a similar system, for gesture-based control of their robot
Milva. Like most approaches in this field, their approach recognizes
static pose gestures only. Their approach is similar to ours in that they
use a (different) neural network algorithm for gesture recognition. Most
notably, their work goes beyond ours in that their tracking algorithm
uses a collection of cues—not just color cues—to track a person and
segment the image. In particular, is uses neural networks for face detec-
tion (see also (Rowley et al., 1998)), and their approach also analyses
the shape of the head-shoulder contour. As a result, we expect that
their approach to track people more robustly than the one presented
here; however, as the results reported in this paper suggest, tracking of
color pairs with adaptive color filters yields very good results in a wide
array of situations.

Finally, approaches for recognizing hand gestures with mobile robots
can be found in (Cui and Weng, 1996; Triesch and von der Malsburg,
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1997; Triesch and von der Malsburg, 1998). For example, Triesch and
van der Marlsburg’s approach tracks a hand using a stereo camera
system, using color, motion, and depth cues for localization of the hand.
The hand posture is recognized using an elastic graph matching algo-
rithm. Due a relatively complex scene analysis, their approach is unable
to recognize gestures in real-time. It is also not suited for mobile robots,
where background and lighting conditions can vary dramatically over
very short periods of time. Nevertheless, in the domain of gesture-based
robot arm manipulation they achieve remarkable recognition results in
scenes with cluttered background.

Gesture interfaces have long been applied to non-moving systems,
where cameras are typically mounted in a static location (often on
a pan/tilt unit). Here we only review a selected number of related
approaches, refer the reader to the rich and decade-old literature on
this topic.

Wren et al. have extended the Artificial Live IVE (ALIVE) project
(Maes et al., 1997) to produce a model of people for a variety of tasks
(cf. (Wren et al., 1997)). The ALIVE project creates a virtual world for
a person in which the person can interact with virtual agents. While
the person watches his image interacting with animated agents on a
television monitor, ALIVE allows the person to interact with the agent
by performing gestures such as waving for an agent to come to him.

Pfinder, or Person Finder, models people as connected sets of blobs:
one for each arm and leg, the head, the torso, and the lower body. Each
blob has a spatial and color Gaussian distribution associated with it.
These distributions are used to track the various parts of the person.
One interesting application of this blob representation is described by
Starner and Pentland in (Starner and Pentland, 1995). The authors
have associated the spatial statistics of the users hands, together with
Hidden Markov Models, to interpret a 44 word subset of the American
Sign Language (ASL). They were able to produce a real-time ASL
interpreter with a 99% sign recognition accuracy.

The abovementioned systems have clear differences to the domain of
mobile robots. Most of them assume a static background and controlled
lighting conditions—assumptions which cannot hold when the robot
and thus the camera is moving. Furthermore, processing power and
network bandwidth in case of our mobile platform is limited. However,
our approach uses similar techniques for coping with the temporal
characteristics of a gesture.

In (Wilson and Bobick, 1995a) Wilson and Bobick model gestures as
view-point dependent motions of the person’s body. Since gestures are
intended to communicate information, the authors assume that people
will actively try to make them easy to understand by orienting them in
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a standard way with respect to the recipient. This premise allows them
to use a Hidden Markov Model to model a motion gesture by observing
examples of the gesture from a single viewpoint. One major difference
to our system is that the location of the person’s body (hands, etc.)
is known to the system. For example when recognizing gestures that
are performed with the hands, the input to the system were the joint
angles returned by a DataGlove.

Wilson, Bobick et al. introduce a system that uses the 3D position of
the head and hands, as determined by 3D vision system, to recognize
18 different T’ai Chi gestures (Campbell et al., 1996). To cope with
the temporal characteristics of the gesture, the authors use a five state
linear Hidden Markov Model.

In (Wilson and Bobick, 1995b) and (Wilson et al., 1996) the au-
thors focus on representing the temporal characteristics of a gesture.
They present a state-based technique for the summarization and recog-
nition of gestures. Gestures are defined to be a sequence of states
in a measurement or configuration space. Again, the authors assume
known gesture-related sensory data (e.g., the movement of the hand as
measured by a magnetic spatial sensor).

As with Pfinder, limitations to the domain of mobile robots, such as
changing lighting conditions, do not apply here. For example, Wilson
et al. assume that the background does not change. Unlike our system,
they also use dedicated vision hardware to process the stereo images.

6. Conclusions

This article described a vision-based gesture interface for human-robot
interaction. A hybrid approach was presented, consisting of an adaptive
color-filter and two alternative methods for recognizing human arm ges-
tures: pose template matcher and neural-network based method. The
Viterbi algorithm was employed to recognize variable-length motion
gestures from streams of feature vectors, extracted from the image.
The interface has been integrated into a mobile robot navigation archi-
tecture, where it was evaluated in the context of a mobile manipulation
task (clean-up) cooperatively carried out with a human instructor.

Our interface goes beyond previous work in that it is capable of
recognizing not only static pose gestures, but also dynamic motion
gestures, which are commonly used for communication among people.
Motion gestures are defined through specific temporal patterns of arm
movements, which improve the classification accuracy and reduce the
chances of accidentally classifying arm poses as gestures that were not
intended as such.
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Experimental results illustrated a high level of robustness and us-
ability of the interface and its individual components. The overall error
rate was 3%. In our subjective judgment, we found the interface to be
well-suited to instruct a mobile robot to pick up trash and deliver it to
a trash bin. While this is only an example application designed to test
the utility of gestures in human-robot interaction, we conjecture that
the proposed interface transcends to a much broader range of upcoming
service robots.

There are some open questions that warrant further research. Some
of the most prominent limitations of the current approach were already
addressed in Section 4.7. For example, the tracking module is currently
unable to follow people who do not face the robot. Future research could
address algorithms that considering other sources of information, such
as shape and texture, when tracking people. Another limitation arose
from the fact that our approach works well if the person keeps a fixed
distance to the robot. We did not find this to be a severe limitation, as
our collision avoid routines maintain a specific distance while following
a person.

As argued in the very beginning, we believe that finding “natural”
ways of communication between humans and robots is of utmost im-
portance for the field of service robotics. While this paper exclusively
addresses gestures as input modality, we believe it is worthwhile to
augment the interface by a speech-based interface, so that both gestures
and speech can be combined when instructing a mobile robot. Gestures
can help to clarify spoken commands, particularly in such situations in
which noise impedes the ability to communicate vocally.
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