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Abstract

This paper describes a scalable algorithm for the simultaneous mapping and localization (SLAM)

problem. SLAM is the problem of acquiring a map of a static environment with a mobile robot.

The vast majority of SLAM algorithms are based on the extended Kalman filter (EKF). This paper

advocates an algorithm that relies on the dual of the EKF, the extended information filter (EIF).

We show that when represented in the information form, map posteriors are dominated by a small

number of links that tie together nearby features in the map. This insight is developed into a sparse

variant of the EIF, called the sparse extended information filters (SEIF). SEIFs represent maps by

graphical networks of features that are locally interconnected, where links represent relative infor-

mation between pairs of nearby features, as well as information about the robot’s pose relative to

the map. We show that all essential update equations in SEIFs can be executed in constant time,

irrespective of the size of the map. We also provide empirical results obtained for a benchmark data

set collected in an outdoor environment, and using a multi-robot mapping simulation.

1 Introduction

Simultaneous localization and mapping (SLAM) is the problem of acquiring a map of an un-

known environment with a moving robot, while simultaneously localizing the robot relative

to this map [9, 21]. The SLAM problem addresses situations where the robot lacks a global

positioning sensor. Instead, it has to rely on a sensor of incremental egomotion for robot posi-

tion estimation (e.g., odometry, inertial navigation). Such sensors accumulate error over time,

making the problem of acquiring an accurate map a challenging one [47]. In recent years, the

SLAM problem has received considerable attention by the scientific community, and a flurry of

new algorithms and techniques has emerged [20].

Existing algorithms can be subdivided into batch and online techniques. The former of-

fer sophisticated techniques to cope with perceptual ambiguities [3, 41, 50], but they can only

generate maps after extensive batch processing. Online techniques are specifically suited to

acquire maps as the robot navigates [9, 44]. Online SLAM is of great practical importance
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in many navigation and exploration problems [4, 42]. Today’s most widely used online algo-

rithms are based on the extended Kalman filter (EKF), whose application to SLAM problems

was developed in a series of seminal papers [30, 43, 44]. The EKF calculates a Gaussian pos-

terior over the locations of environmental features and the robot itself. The estimation of such

a joint posterior probability distribution solves one of the most difficult aspects of the SLAM

problem, namely the fact that the errors in the estimates of features in the map are mutually de-

pendent, by virtue of the fact that they are acquired through a moving platform with inaccurate

positioning. Unfortunately, maintaining a Gaussian posterior imposes a significant burden on

the memory and space requirements of the EKF. The covariance matrix of the Gaussian poste-

rior requires space quadratic in the size of the map, and the basic update algorithm for EKFs

requires quadratic time per measurement update. This quadratic space and time requirement

imposes severe scaling limitations. In practice, EKFs can only handle maps that contain a few

hundred features. In many application domains, it is desirable to acquire maps that are orders

of magnitude larger [17].

This limitation has long been recognized, and a number of approaches exist that represent

the posterior in a more structured way; some of those will be discussed in detail towards the

end of the paper. Possibly the most popular idea is to decompose the map into collections

of smaller, more manageable submaps [2, 11, 22, 46, 55], thereby gaining representational

and computational efficiency. An alternative structured representations effectively estimates

posteriors over entire paths (along with the map), not just the current robot pose. This makes

it possible to exploit a conditional independence that is characteristic of the SLAM problem,

which in turn leads to a factored representation [31, 27, 28]. Most of these structured techniques

are approximate, and most of them require memory linear in the size of the map. Some can

update the posterior in constant time; whereas others maintain quadratic complexity at a much

reduced constant factor.

This paper describes a SLAM algorithm that represents map posterior by relative informa-

tion between features in the map, and between the map and the robot’s pose. This idea is not

new; in fact, it is at the core of recent algorithms by Newman [37] and Csorba [7, 8], and it is

related to an algorithm by Lu and Milios [24]. Just as in recent work by Nettleton et al. [36], our

approach is based on the well-known information form of the EKF, also known as the extended

information filter (EIF) [26]. This filter maintains an information matrix, instead of the common

covariance matrix. The main contribution of this paper is an EIF that maintains a sparse infor-

mation matrix, called the sparse extended information filter (SEIF). This sparse matrix defines

a Web-like network of local relative constraints between pairs of adjacent features in the map,

reminiscent of a Gaussian Markov random field [54]. The sparsity has important ramifications

on the computational properties of solving SLAM problems.

The use of sparse matrices, or local links, is motivated by a key insight: the posterior distri-

bution in SLAM problems is dominated by a small number of relative links between adjacent

features in the map. This is best illustrated through an example. Figure 1 shows the result of



Figure 1: Typical snapshots of EKFs applied to the SLAM problem: Shown here is a map (left panel), a correlation

(center panel), and a normalized information matrix (right panel). Notice that the normalized information matrix

is naturally almost sparse, motivating our approach of using sparse information matrices in SLAM.

the vanilla EKF [30, 44, 43] applied to the SLAM problem, in an environment containing 50

landmarks. The left panel shows a moving robot, along with its probabilistic estimate of the

location of all 50 point features. The central information maintained by the EKF solution is

a covariance matrix of these different estimates. The normalized covariance, i.e., the correla-

tion, is visualized in the center panel of this figure. Each of the two axes lists the robot pose

(x-y location and orientation) followed by the x-y-locations of the 50 landmarks. Dark entries

indicate strong correlations. It is known that in the limit of SLAM, all x-coordinates and all

y-coordinates become fully correlated [9]. The checkerboard appearance of the correlation ma-

trix illustrates this fact. Maintaining these cross-correlations—of which there are quadratically

many in the number of features in the map—are essential to the SLAM problem. This obser-

vation has given rise to the (false) suspicion that online SLAM inherently requires update time

quadratic in the number of features in the map.

The key insight that underlies SEIF is shown in the right panel of Figure 1. Shown there

is the inverse covariance matrix (also known as information matrix [26, 36]), normalized just

like the correlation matrix. Elements in this normalized information matrix can be thought

of as constraints, or links, which constrain the relative locations of pairs of features in the

map: The darker an entry in the display, the stronger the link. As this depiction suggests, the

normalized information matrix appears to be naturally sparse: it is dominated by a small number

of strong links; and it possesses a large number of links whose values, when normalized, are

near zero. Furthermore, the strength of each link is related to the distance of the corresponding

features: Strong links are found only between metrically nearby features. The more distant

two features, the weaker their link. As will become more obvious in the paper, this sparseness

is not coincidental; rather, it directly relates to the way information is acquired in SLAM. This

observation suggest that the EKF solution to SLAM can indeed be approximately using a sparse

representation—despite the fact that the correlation matrix is densely populated. In particular,

while any two features are fully correlated in the limit, the correlation arises mainly through a



Figure 2: Illustration of the network of features generated by our approach. Shown on the left is a sparse informa-

tion matrix, and on the right a map in which entities are linked whose information matrix element is non-zero. As

argued in the paper, the fact that not all features are connected is a key structural element of the SLAM problem,

and at the heart of our constant time solution.

network of local links, which only connect nearby features. It is important to notice that this

structure naturally emerges in SLAM; the results in Figure 1 are obtained using the vanilla EKF

algorithm in [45].

As noted above, our approach exploits this insight by maintaining a sparse information

matrix, in which only nearby features are linked through a non-zero element. The resulting

network structure is illustrated in the right panel of Figure 2, where disks corresponds to point

features and dashed arcs to links, as specified in the information matrix visualized on the left.

This diagram also shows the robot, which is linked to a small subset of all features only. Those

features are called active features and are drawn in black. Storing a sparse information matrix

requires space linear in the number of features in the map. More importantly, all essential

updates in SLAM can be performed in constant time, regardless of the number of features in

the map. This result is somewhat surprising, as a naive implementation of motion updates

in information filters require inversion of the entire information matrix, which is an O(N3)

operation; plain EKFs, in comparison, require O(N 2) time (for the perceptual update).

The remainder of this paper is organized as follows. Section 2 formally introduces the

extended information filter (EIF), which forms the basis of our approach. SEIFs are described

in Section 3, which states the major computational results of this paper. The section develops

the constant time algorithm for maintaining sparse information matrices, and it also presents

an amortized constant time algorithm for recovering a global map from the relative information

in the SEIF. The important issue of data association finds its treatment in Section 4, which

describes a constant time technique for calculating local probabilities necessary to make data

association decisions. Experimental results are provided in Section 5, we specifically compare

our new approach to the EKF solution, using a benchmark data set collected in an outdoor

environment [9, 11]. These results suggest that the sparseness constraint introduces only very

small errors in the resulting maps, when compared to the computationally more cumbersome

EKF solution. The paper is concluded by a literature review in Section 6 and a discussion of



open research issues in Section 7.

2 Extended Information Filters

This section reviews the extended information filter (EIF), which forms the basis of our work.

EIFs are computationally equivalent to extended Kalman filters (EKFs), but they represent in-

formation differently: instead of maintaining a covariance matrix, the EIF maintains an inverse

covariance matrix, also known as information matrix. EIFs have previously been applied to

the SLAM problem, most notably by Nettleton and colleagues [33, 36], but they are much less

common than the EKF approach.

Most of the material in this section applies equally to linear and nonlinear filters. We have

chosen to present all material in the more general nonlinear form, since robots are inherently

nonlinear. The linear form is easily obtained as a special case.

2.1 Information Form of the SLAM Problem

Let xt denote the pose of the robot at time t. For rigid mobile robots operating in a planar en-

vironment, the pose is given by its two Cartesian coordinates and the robot’s heading direction.

Let N denote the number of features (e.g., landmarks) in the environment. The variable yn with

1 ≤ n ≤ N denotes the pose of the n-th feature. For example, for point landmarks in the plane,

yn may comprise the two-dimensional Cartesian coordinates of this landmark. In SLAM, it is

usually assumed that features do not change their location over time; see [16, 53] for a treatment

of SLAM in dynamic environments.

The robot pose xt and the set of all feature locations Y together constitute the state of the

environment. It will be denoted by the vector ξt =
(
xt y1 . . . yN

)T
, where the superscript

T refers to the transpose of a vector.

In the SLAM problem, it is impossible to sense the state ξt directly—otherwise there would

be no mapping problem. Instead, the robot seeks to recover a probabilistic estimate of ξt. Writ-

ten in a Bayesian form, our goal shall be to calculate a posterior distribution over the state ξt.

This posterior p(ξt | zt, ut) is conditioned on past sensor measurements zt = z1, . . . , zt and past

controls ut = u1, . . . , ut. Sensor measurements zt might, for example, specify the approximate

range and bearing to nearby features. Controls ut specify the robot motion command asserted

in the time interval (t− 1; t].

Following the rich EKF tradition in the SLAM literature, our approach represents the pos-

terior p(ξt | zt, ut) by a multivariate Gaussian distribution over the state ξt. The mean of this

distribution will be denoted µt, and covariance matrix Σt:

p(ξt | zt, ut) ∝ exp
{
−1

2
(ξt − µt)TΣ−1

t (ξt − µt)
}

(1)

The proportionality sign replaces a constant normalizer that is easily recovered from the covari-

ance Σt. The representation of the posterior via the mean µt and the covariance matrix Σt is the

basis of the EKF solution to the SLAM problem (and to EKFs in general).



Information filters represent the same posterior through a so-called information matrix Ht
and an information vector bt—instead of µt and Σt. These are obtained by multiplying out the

exponent of (1):

p(ξt | zt, ut) ∝ exp
{
−1

2

[
ξTt Σ−1

t ξt − 2µTt Σ−1
t ξt + µTt Σ−1

t µt
]}

= exp
{
−1

2
ξTt Σ−1

t ξt + µTt Σ−1
t ξt − 1

2
µTt Σ−1

t µt
}

(2)

We now observe that the last term in the exponent, − 1
2
µTt Σ−1

t µt does not contain the free vari-

able ξt and hence can be subsumed into the constant normalizer. This gives us the form:

∝ exp{−1
2
ξTt Σ−1

t︸︷︷︸
=:Ht

ξt + µTt Σ−1
t︸ ︷︷ ︸

=:bt

ξt} (3)

The information matrix Ht and the information vector bt are now defined as indicated:

Ht = Σ−1
t and bt = µTt Ht (4)

Using these notations, the desired posterior can now be represented in what is commonly known

as the information form of the Kalman filter:

p(ξt | zt, ut) ∝ exp
{
−1

2
ξTt Htξt + btξt

}
(5)

As the reader may easily notice, both representations of the multi-variate Gaussian posterior are

functionally equivalent (with the exception of certain degenerate cases): The EKF representa-

tion of the mean µt and covariance Σt, and the EIF representation of the information vector bt
and the information matrix Ht. In particular, the EKF representation can be ‘recovered’ from

the information form via the following algebra:

Σt = H−1
t and µt = H−1

t bTt = Σtb
T
t (6)

The advantage of the EIF over the EKF will become apparent further below, when the concept

of sparse EIFs will be introduced.

Of particular interest will be the geometry of the information matrix. This matrix is sym-

metric and positive-definite:

Ht =




Hxt,xt Hxt,y1 · · · Hxt,yN

Hy1,xt Hy1,y1 · · · Hy1,yN
...

...
. . .

...

HyN ,xt HyN ,y1 · · · HyN ,yN




(7)

Each element in the information matrix constraints one (on the main diagonal) or two (off the

main diagonal) elements in the state vector. We will refer to the off-diagonal elements as links:

the matrices Hxt,yn link together the robot pose estimate and the location estimate of a specific

feature, and the matrices Hyn,yn′ for n 6= n′ link together two feature locations yn and yn′ .

Although rarely made explicit, the manipulation of these links is the very essence of Gaussian

solutions to the SLAM problem. It will be an analysis of these links that ultimately leads to a

constant-time solution to the SLAM problem.



(a) (b)

Figure 3: The effect of measurements on the information matrix and the associated network of features: (a)

Observing y1 results in a modification of the information matrix elements Hxt,y1
. (b) Similarly, observing y2

affects Hxt,y2
. Both updates can be carried out in constant time.

2.2 Measurement Updates

In SLAM, measurements zt carry spatial information on the relation of the robot’s pose and the

location of a feature. For example, zt might be the approximate range and bearing to a nearby

feature. Without loss of generality, we will assume that each measurement zt corresponds to

exactly one feature in the map. Sightings of multiple features at the same time may easily be

processed one-after-another.

Figure 3 illustrates the effect of measurements on the information matrix Ht. Suppose the

robot measures the approximate range and bearing to the feature y1, as illustrated in Figure 3a.

This observation links the robot pose xt to the location of y1. The strength of the link is given

by the level of noise in the measurement. Updating EIFs based on this measurement involves

the manipulation of the off-diagonal elements Hxt,y and their symmetric counterparts Hy,xt

that link together xt and y. Additionally, the on-diagonal elements Hxt,xt and Hy1,y1 are also

updated. These updates are additive: Each observation of a feature y increases the strength of

the total link between the robot pose and this very feature, and with it the total information in

the filter. Figure 3b shows the incorporation of a second measurement of a different feature,

y2. In response to this measurement, the EIF updates the links Hxt,y2 = HT
y2,xt

(and Hxt,xt

and Hy2,y2). As this example suggests, measurements introduce links only between the robot

pose xt and observed features. Measurements never generate links between pairs of features, or

between the robot and unobserved features.

For a mathematical derivation of the update rule, we observe that Bayes rule enables us to

factor the desired posterior into the following product:

p(ξt | zt, ut) ∝ p(zt | ξt, zt−1, ut) p(ξt | zt−1, ut)

= p(zt | ξt) p(ξt | zt−1, ut) (8)

The second step of this derivation exploited common (and obvious) independences in SLAM

problems [49]. For the time being, we assume that p(ξt | zt−1, ut) is represented by H̄t and

b̄t. Those will be discussed in the next section, where robot motion will be addressed. The key

question addressed in this section, thus, concerns the representation of the probability distribu-

tion p(zt | ξt) and the mechanics of carrying out the multiplication above. In the ‘extended’



family of filters, a common model of robot perception is one in which measurements are gov-

erned via a deterministic nonlinear measurement function h with added Gaussian noise:

zt = h(ξt) + εt (9)

Here εt is an independent noise variable with zero mean, whose covariance will be denoted Z.

Put into probabilistic terms, (9) specifies a Gaussian distribution over the measurement space

of the form

p(zt | ξt) ∝ exp
{
−1

2
(zt − h(ξt))

TZ−1(zt − h(ξt))
}

(10)

Following the rich literature of EKFs, EIFs approximate this Gaussian by linearizing the mea-

surement function h. More specifically, a Taylor series expansion of h gives us

h(ξt) ≈ h(µt) +∇ξh(µt)[ξt − µt] (11)

where ∇ξh(µt) is the first derivative (Jacobian) of h with respect to the state variable ξ, taken

ξ = µt. For brevity, we will write ẑt = h(µt) to indicate that this is a prediction given our state

estimate µt. The transpose of the Jacobian matrix ∇ξh(µt) and will be denoted Ct. With these

definitions, Equation (11) reads as follows:

h(ξt) ≈ ẑt + CT
t (ξt − µt) (12)

This approximation leads to the following Gaussian approximation of the measurement density

in Equation (10):

p(zt | ξt) ∝ exp
{
−1

2
(zt − ẑt − CT

t ξt + CT
t µt)

TZ−1(zt − ẑt − CT
t ξt + CT

t µt)
}

(13)

Multiplying out the exponent and regrouping the resulting terms gives us

= exp
{
−1

2
ξTt CtZ

−1CT
t ξt + (zt − ẑt + CT

t µt)
TZ−1CT

t ξt (14)

−1
2
(zt − ẑt + CT

t µt)
TZ−1(zt − ẑt + CT

t µt)
}

As before, the final term in the exponent does not depend on the variable ξt and hence can be

subsumed into the proportionality factor:

∝ exp
{
−1

2
ξTt CtZ

−1CT
t ξt + (zt − ẑt + CT

t µt)
TZ−1CT

t ξt
}

(15)

We are now in the position to state the measurement update equation, which implement the

probabilistic law (8).

p(ξt | zt, ut) ∝ exp
{
−1

2
ξTt H̄tξt + b̄tξt

}

· exp
{
−1

2
ξTt CtZ

−1CT
t ξt + (zt − ẑt + CT

t µt)
TZ−1CT

t ξt
}

= exp{−1
2
ξTt (H̄t + CtZ

−1CT
t︸ ︷︷ ︸

Ht

)ξt + (b̄t + (zt − ẑt + CT
t µt)

TZ−1CT
t︸ ︷︷ ︸

bt

)ξt} (16)



(a) (b)

Figure 4: The effect of motion on the information matrix and the associated network of features: (a) before

motion, and (b) after motion. If motion is non-deterministic, motion updates introduce new links (or reinforce

existing links) between any two active features, while weakening the links between the robot and those features.

This step introduces links between pairs of features.

Thus, the measurement update of the EIF is given by the following additive rule:

Ht = H̄t + CtZ
−1CT

t (17)

bt = b̄t + (zt − ẑt + CT
t µt)

TZ−1CT
t (18)

In the general case, these updates may modify the entire information matrix Ht and vector bt,

respectively. A key observation of all SLAM problems is that the Jacobian Ct is sparse. In

particular, Ct is zero except for the elements that correspond to the robot pose xt and the feature

yt observed at time t.

Ct =
(

∂h
∂xt

0 · · · 0 ∂h
∂yt

0 · · · 0
)T

(19)

This well-known sparseness of Ct [9] is due to the fact that measurements zt are only a function

of the relative distance and orientation of the robot to the observed feature. As a pleasing

consequence, the update CtZ−1CT
t to the information matrix in (17) is only non-zero in four

places: the off-diagonal elements that link the robot pose xt with the observed feature yt, and

the main-diagonal elements that correspond to xt and yt. Thus, the update equations (17) and

(18) are well in tune with our intuitive description given in the beginning of this section, where

we argued that measurements only strengthen the links between the robot pose and observed

features, in the information matrix.

To compare this to the EKF solution, we notice that even though the change of the informa-

tion matrix is local, the resulting covariance usually changes in non-local ways. put differently,

the difference between the old covariance Σ̄t = H̄−1
t and the new covariance matrix Σt = H−1

t

is usually non-zero everywhere.

2.3 Motion Updates

The second important step of SLAM concerns the update of the filter in accordance to robot mo-

tion. In the standard SLAM problem, only the robot pose changes over time. The environment

is static.

The effect of robot motion on the information matrix Ht are slightly more complicated than

that of measurements. Figure 4a illustrates an information matrix and the associated network



before the robot moves, in which the robot is linked to two (previously observed) features.

If robot motion was free of noise, this link structure would not be affected by robot motion.

However, the noise in robot actuation weakens the link between the robot and all active features.

Hence Hxt,y1 and Hxt,y2 are decreased by a certain amount. This decrease reflects the fact that

the noise in motion induces a loss of information of the relative location of the features to the

robot. Not all of this information is lost, however. Some of it is shifted into between-feature

links Hy1,y2 , as illustrated in Figure 4b. This reflects the fact that even though the motion

induced a loss of information of the robot relative to the features, no information was lost

between individual features. Robot motion, thus, has the effect that features that were indirectly

linked through the robot pose become linked directly.

To derive the update rule, we begin with a Bayesian description of robot motion. Updating

a filter based on robot motion motion involves the calculation of the following posterior:

p(ξt | zt−1, ut) =
∫
p(ξt | ξt−1, z

t−1, ut) p(ξt−1 | zt−1, ut) dξt−1 (20)

Exploiting the common SLAM independences [49] leads to

p(ξt | zt−1, ut) =
∫
p(ξt | ξt−1, ut) p(ξt−1 | zt−1, ut−1) dξt−1 (21)

The term p(ξt−1 | zt−1, ut−1) is the posterior at time t − 1, represented by Ht−1 and bt−1. Our

concern will therefore be with the remaining term p(ξt | ξt−1, ut), which characterizes robot

motion in probabilistic terms.

Similar to the measurement model above, it is common practice to model robot motion by

a nonlinear function with added independent Gaussian noise:

ξt = ξt−1 + ∆t with ∆t = g(ξt−1, ut) + Sxδt (22)

Here g is the motion model, a vector-valued function which is non-zero only for the robot pose

coordinates, as feature locations are static in SLAM. The term labeled ∆t constitutes the state

change at time t. The stochastic part of this change is modeled by δt, a Gaussian random variable

with zero mean and covariance Ut. This Gaussian variable is a low-dimensional variable defined

for the robot pose only. Here Sx is a projection matrix of the form Sx = ( I 0 . . . 0 )T , where

I is an identity matrix of the same dimension as the robot pose vector xt and as of δt. Each

0 in this matrix refers to a null matrix, of which there are N in Sx. The product Sxδt, hence,

give the following generalized noise variable, enlarged to the dimension of the full state vector

ξ: Sxδt = ( δt 0 . . . 0 )T . In EIFs, the function g in (22) is approximated by its first degree

Taylor series expansion:

g(ξt−1, ut) ≈ g(µt−1, ut) +∇ξg(µt−1, ut)[ξt−1 − µt−1]

= ∆̂t + Atξt−1 − Atµt−1 (23)

Here At = ∇ξg(µt−1, ut) is the derivative of g with respect to ξ at ξ = µt−1 and ut. The symbol

∆̂t is short for the predicted motion effect, g(µt−1, ut). Plugging this approximation into (22)



leads to an approximation of ξt, the state at time t:

ξt ≈ (I + At)ξt−1 + ∆̂t − Atµt−1 + Sxδt (24)

Hence, under this approximation the random variable ξt is again Gaussian distributed. Its mean

is obtained by replacing ξt and δt in (24) by their respective means:

µ̄t = (I + At)µt−1 + ∆̂t − Atµt−1 + Sx0 = µt−1 + ∆̂t (25)

The covariance of ξt is simply obtained by scaled and adding the covariance of the Gaussian

variables on the right-hand side of (24):

Σ̄t = (I + At)Σt−1(I + At)
T + 0− 0 + SxUtS

T
x

= (I + At)Σt−1(I + At)
T + SxUtS

T
x (26)

Update equations (25) and (26) are in the EKF form, that is, they are defined over means and co-

variances. The information form is now easily recovered from the definition of the information

form in (4) and its inverse in (6). In particular, we have

H̄t = Σ̄−1
t =

[
(I + At)Σt−1(I + At)

T + SxUtS
T
x

]−1

=
[
(I + At)H

−1
t−1(I + At)

T + SxUtS
T
x

]−1
(27)

b̄t = µ̄Tt H̄t =
[
µt−1 + ∆̂t

]T
H̄t =

[
H−1
t−1b

T
t−1 + ∆̂t

]T
H̄t

=
[
bt−1H

−1
t−1 + ∆̂T

t

]
H̄t (28)

These equations appear computationally involved, in that they require the inversion of large

matrices. In the general case, the complexity of the EIF is therefore cubic in the size of the state

space. In the next section, we provide the surprising result that both H̄t and b̄t can be computed

in constant time if Ht−1 is sparse.

3 Sparse Extended Information Filters

The central, new algorithm presented in this paper is the sparse extended information filter, or

SEIF. The SEIF differs from the extended information filter described in the previous section in

that it maintains a sparse information matrix. An information matrix Ht is considered sparse if

the number of links to the robot and to each feature in the map is bounded by a constant that is

independent of the number of features in the map. The bound for the number of links between

the robot pose and other features in the map will be denoted θx; the bound on the number of

links for each feature (not counting the link to the robot) will be denoted θy. The motivation for

maintaining a sparse information is mainly computational, as will become apparent below. Its

justification was already discussed above, when we demonstrated that in SLAM, the normalized

information matrix is already almost sparse. This suggests that by enforcing sparseness, the

induced approximation error is small.



3.1 Constant Time Results

We begin by proving three important constant time results, which form the backbone of SEIFs.

All proofs can be found in the appendix.

Lemma 1: The measurement update in Section (2.2) requires constant time, irrespective of

the number of features in the map.

This lemma ensures that measurements can be incorporated in constant time. Notice that

this lemma does not require sparseness of the information matrix; rather, it is a well-known

property of information filters in SLAM.

Less trivial is the following lemma:

Lemma 2: If the information matrix is sparse andAt = 0, the motion update in Section (2.3)

requires constant time. The constant-time update equations are given by:

Lt = Sx[U
−1
t + STxHt−1Sx]

−1STxHt−1

H̄t = Ht−1 −Ht−1Lt (29)

b̄t = bt−1 + ∆̂T
t Ht−1 − bt−1Lt + ∆̂T

t Ht−1Lt

This result addresses the important special case At = 0, that is, the Jacobian of pose change

with respect to the absolute robot pose is zero. This is the case for robots with linear mechanics,

and with nonlinear mechanics where there is no ‘cross-talk’ between absolute coordinates and

the additive change due to motion.

In general, At 6= 0, since the x-y update depends on the robot orientation. This case is

addressed by the next lemma:

Lemma 3: If the information matrix is sparse, the motion update in Section (2.3) requires

constant time if the mean µt is available for the robot pose and all active features. The constant-

time update equations are given by:

Ψt = I − Sx(I + [STxAtSx]
−1)−1STx

H ′t−1 = ΨT
t Ht−1Ψt

∆Ht = H ′t−1Sx[U
−1
t + STxH

′
t−1Sx]

−1STxH
′
t−1

H̄t = H ′t−1 −∆Ht

b̄t = bt−1 − µTt−1(∆Ht −Ht−1 +H ′t−1) + ∆̂T
t H̄t (30)

For At 6= 0, a constant time update requires knowledge of the mean µt−1 before the motion

command, for the robot pose and all active features (but not the passive features). This informa-

tion is not maintained by the standard information filter, and extracting it in the straightforward

way (via Equation (6)) requires more than constant time. A constant-time solution to this prob-

lem will now be presented.

3.2 Sparsification

The final step in SEIFs concerns the sparsification of the information matrix Ht. Sparsification

is necessarily an approximative step, since information matrices in SLAM are naturally not



sparse—even though normalized information matrices tend to be almost sparse. In the context

of SLAM, it suffices to remove links (deactivate) between the robot pose and individual features

in the map; if done correctly, this also limits the number of links between pairs of features.

To see, let us briefly consider the two circumstances under which a new link may be intro-

duced. First, observing a passive feature activates this feature, that is, introduces a new link

between the robot pose and the very feature. Thus, measurement updates potentially violate the

bound θx. Second, motion introduces links between any two active features, and hence lead to

violations of the bound θy. This consideration suggests that controlling the number of active

features can avoid violation of both sparseness bounds.

Our sparsification technique is illustrated in Figure 5. Shown there is the situation before and

after sparsification. The removal of a link in the network corresponds to setting an element in the

information matrix to zero; however, this requires the manipulation of other links between the

robot and other active features. The resulting network is only an approximation to the original

one, whose quality depends on the magnitude of the link before removal.

We will now present a constant-time sparsification technique. To do so, it will prove useful

to partition the set of all features into three disjoint subsets:

Y = Y + + Y 0 + Y − (31)

where Y + is the set of all active features that shall remain active. Y 0 are one or more active

features that we seek to deactivate (remove the link to the robot). Finally, Y − are all currently

passive features.

The sparsification is best derived from first principles. If Y+ ] Y 0 contains all currently

active features, the posterior can be factored as follows:

p(xt, Y | zt, ut) = p(xt, Y
0, Y +, Y − | zt, ut)

= p(xt | Y 0, Y +, Y −, zt, ut) p(Y 0, Y +, Y − | zt, ut)
= p(xt | Y 0, Y +, Y − = 0, zt, ut) p(Y 0, Y +, Y − | zt, ut) (32)

In the last step we exploited the fact that if we know the active features Y 0 and Y +, the variable

xt does not depend on the passive features Y −. We can hence set Y − to an arbitrary value

without affecting the conditional posterior over xt, p(xt | Y 0, Y +, Y −, zt, ut). Here we simply

chose Y − = 0.

To sparsify the information matrix, the posterior is approximated by the following distribu-

tion, in which we simply drop the dependence on Y 0 in the first term. It is easily shown that

this distribution minimizes the KL divergence to the exact, non-sparse distribution:

p̃(xt, Y | zt, ut) = p(xt | Y +, Y − = 0, zt, ut) p(Y 0, Y +, Y − | zt, ut)

=
p(xt, Y

+ | Y − = 0, zt, ut)

p(Y + | Y − = 0, zt, ut)
p(Y 0, Y +, Y − | zt, ut) (33)

This posterior is calculated in constant time. In particular, we begin by calculating the informa-

tion matrix for the distribution p(xt, Y 0, Y + | Y − = 0) of all variables but Y −, and conditioned



on Y − = 0. This is obtained by extracting the submatrix of all state variables but Y −:

H ′t = Sx,Y +,Y 0STx,Y +,Y 0HtSx,Y +,Y 0STx,Y +,Y 0 (34)

With that, the matrix inversion lemma1 leads to the following information matrices for the terms

p(xt, Y
+ | Y − = 0, zt, ut) and p(Y + | Y − = 0, zt, ut), denoted H1

t and H2
t , respectively:

H1
t = H ′t −H ′tSY0(STY0

H ′tSY0)−1STY0
H ′t

H2
t = H ′t −H ′tSx,Y0(STx,Y0

H ′tSx,Y0)−1STx,Y0
H ′t (36)

Here the various S-matrices are projection matrices, analogous to the matrix Sx defined above.

The final term in our approximation (33), p(Y0, Y +, Y − | zt, ut), has the following information

matrix:

H3
t = Ht −HtSxt(S

T
xtHtSxt)

−1STxtHt (37)

Putting these expressions together according to Equation (33) yields the following information

matrix, in which the feature Y 0 is now indeed deactivated:

H̃t = H1
t −H2

t +H3
t = Ht −H ′tSY0(STY0

H ′tSY0)−1STY0
H ′t

+H ′tSx,Y0(STx,Y0
H ′tSx,Y0)−1STx,Y0

H ′t −HtSxt(S
T
xtHtSxt)

−1STxtHt (38)

The resulting information vector is now obtained by the following simple consideration:

b̃t = µTt H̃t = µTt (Ht −Ht + H̃t)

= µTt Ht + µTt (H̃t −Ht) = bt + µTt (H̃t −Ht) (39)

All equations can be computed in constant time, regardless of the size of Ht. The effect of

this approximation is the deactivation of the features Y 0, while introducing only new links

between active features. The sparsification rule requires knowledge of the mean vector µt for

all active features, which is obtained via the approximation technique described in the previous

section. From (39), it is obvious that the sparsification does not affect the mean µt, that is,

H−1
t bTt = [H̃t]

−1[b̃t]
T . Furthermore, our approximation minimizes the KL divergence to the

correct posterior. These property is essential for the consistency of our approximation.

The sparsification is executed whenever a measurement update or a motion update would

violate a sparseness constraint. Active features are chosen for deactivation in reverse order

of the magnitude of their link. This strategy tends to deactivate features whose last sighting

is furthest away in time. Empirically, it induces approximation errors that are negligible for

appropriately chosen sparseness constraints θx and θy.
1The matrix inversion lemma (Sherman-Morrison-Woodbury formula), as used throughout this article, is stated

as follows:

(
H−1 + SBST

)−1
= H −HS

(
B−1 + STHS

)−1
STH (35)



3.3 Amortized Approximate Map Recovery

Before deriving an algorithm for recovering the state estimate µt from the information form,

let us briefly consider what parts of µt are needed in SEIFs, and when. SEIFs need the state

estimate µt of the robot pose and the active features in the map. These estimates are needed at

three different occasions: (1) the linearization of the nonlinear measurement and motion model,

(2) the motion update according to Lemma 3, and (3) the sparsification technique described

further below. For linear systems, the means are only needed for the sparsification (third point

above). We also note that we only need constantly many of the values in µt, namely the estimate

of the robot pose and of the locations of active features.

As stated in (6), the mean vector µt is a function of Ht and bt:

µt = H−1
t bTt = Σtb

T
t (40)

Unfortunately, calculating Equation (40) directly involves inverting a large matrix, which would

requires more than constant time.

The sparseness of the matrix Ht allows us to recover the state incrementally. In particu-

lar, we can do so on-line, as the data is being gathered and the estimates b and H are being

constructed. To do so, it will prove convenient to pose (40) as an optimization problem:

Lemma 4: The state µt is the mode ν̂t := argmaxνt p(νt) of the Gaussian distribution, de-

fined over the variable νt:

p(νt) = const. · exp
{
−1

2
νTt Htνt + bTt νt

}
(41)

Here νt is a vector of the same form and dimensionality as µt. This lemma suggests that

recovering µt is equivalent to finding the mode of (41). Thus, it transforms a matrix inversion

problem into an optimization problem. For this optimization problem, we will now describe

an iterative hill climbing algorithm which, thanks to the sparseness of the information matrix,

requires only constant time per optimization update.

Our approach is an instantiation of coordinate descent. For simplicity, we state it here for a

single coordinate only; our implementation iterates a constant number K of such optimizations

after each measurement update step. The mode ν̂t of (41) is attained at:

ν̂t = argmax
νt

p(νt) = argmax
νt

exp
{
−1

2
νTt Htνt + bTt νt

}

= argmin
νt

1
2
νTt Htνt − bTt νt (42)

We note that the argument of the min-operator in (42) can be written in a form that makes the

individual coordinate variables νi,t (for the i-th coordinate of νt) explicit:

1
2
νTt Htνt − bTt νt = 1

2

∑

i

∑

j

νTi,tHi,j,tνj,t −
∑

i

bTi,tνi,t (43)

where Hi,j,t is the element with coordinates (i, j) in Ht, and bi,t if the i-th component of the

vector bt. Taking the derivative of this expression with respect to an arbitrary coordinate variable
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Figure 5: Sparsification: A feature is deactivated by eliminating its link to the robot. To compensate for this

change in information state, links between active features and/or the robot are also updated. The entire operation

can be performed in constant time.

νi,t gives us

∂

∂νi,t





1
2

∑

i

∑

j

νTi,tHi,j,tνj,t −
∑

i

bTi,tνi,t



 =

∑

j

Hi,j,tνj,t − bTi,t (44)

Setting this to zero leads to the optimum of the i-th coordinate variable νi,t given all other

estimates νj,t:

ν
[k+1]
i,t = H−1

i,i,t


bTi,t −

∑

j 6=i
Hi,j,tν

[k]
j,t


 (45)

The same expression can conveniently be written in matrix notation, were Si is a projection

matrix for extracting the i-th component from the matrix Ht:

ν
[k+1]
i,t = (STi HtSi)

−1STi
[
bt −Htν

[k]
t +HtSiS

T
i ν

[k]
t

]
(46)

All other estimates νi′,t with i′ 6= i remain unchanged in this update step, that is, ν [k+1]
i′,t = ν

[k]
i′,t.

As is easily seen, the number of elements in the summation in (45), and hence the vector

multiplication in (46), is constant if Ht is sparse. Hence, each update requires constant time. To

maintain the constant-time property of our SLAM algorithm, we can afford a constant number

of updates K per time step. This will generally not lead to convergence, but the relaxation

process takes place over multiple time steps, resulting in small errors in the overall estimate.

4 Data Association

Data association refers to the problem of determining the correspondence between multiple

sightings of identical features. Features are generally not unique in appearance, and the robot

has to make decisions with regards to the identity of individual features. Data association is

generally acknowledged to be a key problem in SLAM, and a number of solutions has been

proposed [9, 28, 46]. Here we follow the standard maximum likelihood approach described

in [9]. This approach requires a mechanism for evaluating the likelihood of a measurement

under an alleged data association, so as to identify the association that makes the measurement

most probable. The key result here is that this likelihood can be approximated tightly in constant

time.



4.1 Recovering Data Association Probabilities

To perform data association, we augment the notation to make the data association variable

explicit. Let nt be the index of the measurement zt, and let nt be the sequence of all correspon-

dence variables leading up to time t. The domain of nt is 1, . . . , Nt−1 + 1 for some number of

features Nt−1 that is increased dynamically as new features are acquired. We distinguish two

cases, namely that a feature corresponds to a previously observed one (hence nt ≤ Nt−1), or

that zt corresponds to a new, previously unobserved feature (nt = Nt−1 + 1). We will denote

the robot’s guess of nt by n̂t.

To make the correspondence variables explicit in our notation, the posterior estimated by

SEIF will henceforth be denoted

p(ξt | zt, ut, n̂t) (47)

Here n̂t is the sequence of the estimated values of the correspondence variables nt. Notice that

we chose to place the correspondences on the right side of the conditioning bar. The maxi-

mum likelihood approach simply choses the correspondence that maximizes the measurement

likelihood at any point in time:

n̂t = argmax
nt

p(zt | zt−1, ut, n̂t−1, nt)

= argmax
nt

∫
p(zt | ξt, nt) p(ξt | zt−1, ut, n̂t−1)︸ ︷︷ ︸

H̄t,b̄t

dξt

= argmax
nt

∫ ∫
p(zt | xt, ynt , nt) p(xt, ynt | zt−1, ut, n̂t−1) (48)

Our notation p(zt | xt, ynt , nt) of the sensor model makes the correspondence variable nt ex-

plicit. Calculating this probability exactly is not possible in constant time, since it involves

marginalizing out almost all variables in the map (which requires the inversion of a large ma-

trix). However, the same type of approximation that was essential for the efficient sparsification

can also be applied here as well.

In particular, let us denote by Y +
nt the combined Markov blanket of the robot pose xt and

the landmark ynt . This Markov blanket is the set of all features in the map that are linked to

the robot of landmark ynt . Figure 6 illustrates this set. Notice that Y +
nt includes by definition

all active landmarks. The spareness of H̄t ensures that Y +
nt contains only a fixed number of

features, regardless of the size of the map N .

All other features will be collectively referred to as Y −nt , that is:

Y −nt = Y − Y +
nt − {ynt} (49)

The set Y −nt contains only features whose location asserts only an indirect influence on the

two variables of interest, xt and ynt . Our approach approximates the probability p(xt, ynt |
zt−1, ut, n̂t−1) in Equation (48) by essentially ignoring these indirect influences:

p(xt, ynt | zt−1, ut, n̂t−1)
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Figure 6: The combined Markov blanket of feature yn and robot xt is sufficient for approximating the posterior

probability of the feature locations, conditioning away all other features. This insight leads to a constant time

method for recovering the approximate probability distribution p(xt, yn | zt−1, ut).

=
∫ ∫

p(xt, ynt , Y
+
nt , Y

−
nt | zt−1, ut, n̂t−1) dY +

nt dY
−
nt

=
∫ ∫

p(xt, ynt | Y +
nt , Y

−
nt , z

t−1, ut, n̂t−1) p(Y +
nt | Y −nt , zt−1, ut, n̂t−1)

p(Y −nt | zt−1, ut, n̂t−1) dY +
nt dY

−
nt (50)

≈
∫
p(xt, ynt | Y +

nt , Y
−
nt = µ−n , z

t−1, ut, n̂t−1) p(Y +
nt | Y −nt = µ−n , z

t−1, ut, n̂t−1) dY +
nt

This probability can be computed in constant time. In complete analogy to various derivations

above, we note that the approximation of the posterior is simply obtained by carving out the

submatrix corresponding to the two target variables:

Σt:nt = STxt,yn (ST
xt,yn,Y

+
n
Ht Sxt,yn,Y +

n
)−1 Sxt,yn

µt:nt = µtSxt,yn (51)

This calculation is constant time, since it involves a matrix whose size is independent of N .

From this Gaussian, the desired measurement probability in Equation (48) is now easily re-

covered, as described in Section 2.2. In our experiment, we found this approximation to work

surprisingly well. In the results reported further below using real-world data, the average rela-

tive error in estimating likelihoods is 3.4 × 10−4. Association errors due to this approximation

were practically non-existent.

New features are detected by comparing the likelihood p(zt | zt−1, ut, n̂t−1, nt) to a thresh-

old α. If the likelihood is smaller than α, we set n̂t = Nt−1 + 1 and Nt = Nt−1 + 1; otherwise

the size of the map remains unchanged, that is, Nt = Nt−1. Such an approach approach is

standard in the context of EKFs [9].

4.2 Map Management

Our exact mechanism for building up the map is closely related to common procedures in the

SLAM community [9]. Due to erroneous feature detections caused for example by moving

objects or measurement noise, additional care has to be taken to filter out those interfering mea-

surements. For any detected object that can not be explained by existing features, a new feature

candidate is generated but not put into SEIF directly. Instead it is added into a provisional list



Figure 7: Comparison of EKFs with SEIFs using a simulation with N = 50 landmarks. In both diagrams, the left

panels show the final filter result, which indicates higher certainties for our approach due to the approximations

involved in maintaining a sparse information matrix. The center panels show the links (red: between the robot and

landmarks; green: between landmarks). The right panels show the resulting covariance and normalized information

matrices for both approaches. Notice the similarity!

with a weight representing its probability of being a useful feature. In the next measurement

step, the newly arrived candidates are checked against all candidates in the waiting list; reason-

able matches increase the weight of corresponding candidates. Candidates that are not matched

lose weight because they are more likely to be a moving object. When a candidate has its weight

above a certain threshold, it joins the SEIF network of features.

We notice that data association violates the constant time property of SEIFs. This is because

when calculating data associations, multiple features have to be tested. If we can ensure that

all plausible features are already connected in the SEIF by a short path to the set of active

features, it would be feasible to perform data association in constant time. In this way, the

SEIF structure naturally facilitates the search of the most likely feature given a measurement.

However, this is not the case when closing a cycle for the first time, in which case the correct

association might be far away in the SEIF adjacency graph. Using incremental versions of kd-

trees [23, 40], it appears to be feasible to implement data association in logarithmic time by

recursively partitioning the space of all feature locations using a tree. However, our present

implementation does not rely on such trees, hence is overly inefficient.

As a final aside, we notice that another important operation can be done in constant time

in SEIF: the merge of identical features previously mistreated as two or more unique ones. It

is simply accomplished by adding corresponding values in the Ht matrix and bt vector. This

operation is necessary when collapsing multiple features into one upon the arrival of further

sensor evidence, a topic that is presently not implemented.



Figure 8: The vehicle used in our experiments is equipped with a 2D laser range finder and a differential GPS

system. The vehicle’s ego-motion is measured by a linear variable differential transformer sensor for the steering,

and a wheel-mounted velocity encoder. In the background, the Victoria Park test environment can be seen.

5 Experimental Results

The primary purpose of our experimental comparison was to evaluate the performance of the

SEIF against that of the “gold standard” in SLAM, which is the EKF, from which the SEIF is

derived. Some of our experiments rely on a benchmark dataset, commonly used to evaluate

SLAM algorithms [9, 11]. Others rely on simulation, to facilitate more systematic evaluations.

The vehicle and its environment are shown in Figures 8 and 9, respectively. The robot is

equipped with a SICK laser range finder and a unit for measuring steering angle and forward

velocity. The laser is used to detect trees in the park, but it also picks up hundreds of spurious

features such as corners of moving cars on a nearby highway. The raw odometry of the vehicle

is extremely poor, resulting in several hundred meters of error when used for path integration

along the vehicle’s 3.5km path. This is illustrated in Figure 9(a), which shows the path of the

vehicle. The poor quality of the odometry information along with the presence of many spurious

features make this dataset particularly amenable for testing SLAM algorithms.

The path recovered by the SEIF is shown in Figure 9(b). This path is visually indistinguish-

able from the one produced by the EKF and related variants [9, 11]. The average position error

is smaller than 0.50 meters, which is vanishingly small compared to the overall path length of

3.5 km. Comparing with EKF, SEIF runs approximately twice as fast and consumes less than

a quarter of the memory EKF uses. We conclude that the SEIF performs as well on a physical

benchmark data set as far as its accuracy is concerned; however, even though the overall size of

the map is small, using SEIFs result in noticeable savings both in memory and execution time.

In addition to the real-world data, we also used a robot simulator. The simulator has the

advantage that we know the ground truth (which is unknown for the real-world data sets), and

that it facilitates systematic experiments specifically with regards to scaling up SEIFs to large

environments. In our simulations, we focused particularly on the loop closing problem, which

is generally acknowledged to be one of the hardest problems in SLAM [13, 24]. When clos-

ing a loop, usually many landmark locations are affected, testing our amortized map recovery



Figure 9: The testing environment: A 350 meters by 350 meters patch in Victoria Park in Sydney. (a) shows

integrated path from odometry readings (b) shows the path as the result of SEIF.

(a) (b)

mechanism under the hardest possible circumstances. As noted above, loop closures are the

only condition under which SEIFs cannot be executed in constant time per update, since the

most likely data association requires non-local search.

The robot simulator is set up to always generate maps with the same density of landmarks

(on average); as the number of landmarks is increased, so is the size of the environment. Each

unit interval possesses 50 landmarks (on average). The landmarks are randomly distributed

in a squared region with a minimum distance between any pair of landmarks. The noise of

robot motion and measurements are all modeled by zero mean Gaussian noise. Specifically,

the variance is 10−4 for forward velocity, 10−3 for rotational velocity, 0.002 for range detection

and 0.003 for bearings measurements. In each iteration of the simulation, the robot takes one

move and one measurement, at which it may sense a variable number of nearby landmarks.

In each our experiments, we performed a total of 20N iterations, which leads roughly to the

same number of sightings of individual landmarks. The maximum sensor range is set to 0.2,

which results in approximately 6 landmark detections on average for one measurement step.

The maximum number of active landmarks is always set to be 10, a parameter that worked well

empirically.

Figure 11 and 12 show that SEIF beats EKF in terms of computation and memory usage.

This does not surprise, given that SEIFs maintain sparse matrices. As predicted by the theory,

EKF’s usage of computation and memory both increase quadratically with the number of land-

marks N . In SEIFs, the CPU time per iteration appears to stay roughly constant for maps with

300 or more landmark. The memory used to store the information matrix increases only linearly

as expected. Due to the approximation of the information matrix and amortized map recovery,

SEIF has bigger error than EKF. This is shown in Figure 13, which plots the empirical error as a



Figure 10: Overlay of estimated landmark positions and robot path.

function of the map size N . However, this increase in error is small, and can easily be justified

by the reduced computation and memory costs when the map is large.

In another series of experiments, we were particularly interested in the source of possible

approximation errors. In particular, we sought to elucidate what fraction of the residual error

was due to the sparsification, and what fraction was due to the amortized recovery of the map.

To this end we compared three algorithms: EKFs, SEIFs, and a variant of SEIFs in which the

exact state estimate µt is always available. The latter was implemented using matrix inversion,

as described in Equation (6). Clearly, the recovery of the map does not run in constant time, but

it always provides an exact result.

The following table depicts results for N = 50 landmarks, after 500 update cycles, at which

point all three approaches are near convergence.

# experiments final error final # of links computation

(with 95% conf. interval) (with 95% conf. interval) (per update)

EKF 1,000 (5.54± 0.67) · 10−3 1,275 O(N2)

SEIF with exact µt 1,000 (4.75± 0.67) · 10−3 549± 1.60 O(N3)

SEIF (constant time) 1,000 (6.35± 0.67) · 10−3 549± 1.59 O(1)

As these results suggest, our approach approximates EKF very tightly. The residual map er-

ror of our approach is with 6.35 · 10−3 approximately 14.6% higher than that of the extended

Kalman filter. This error appears to be largely caused by the coordinate descent procedure, and

is possibly inflated by the fact that K = 10 is a small value given the size of the map. Enforc-

ing the sparseness constraint seems not to have any negative effect on the overall error of the

resulting map, as the results for our sparse filter implementation suggest.

In a final series of experiments we applied SEIFs to a restricted version of the multi-robot

SLAM problem, commonly studied in the literature [36]. In our implementation, the robots are



Figure 11: The comparison of average CPU time between SEIF and EKF.

Figure 12: The comparison of average memory usage between SEIF and EKF.

Figure 13: The comparison of root mean square distance error between SEIF and EKF.



Step t = 3 Step t = 62

Step t = 65 Step t = 85

Step t = 89 Step t = 500

Figure 14: Snapshots from our multi-robot SLAM simulation at different points in time. Initially, the poses of the

vehicles are known. During Steps 62 through 64, vehicle 1 and 2 traverse the same area for the first time; as a result,

the uncertainty in their local maps shrinks. Later, in steps 85 through 89, vehicle 2 observes the same landmarks as

vehicle 3, with a similar effect on the overall uncertainty. After 500 steps, all landmarks are accurately localized.



informed of their initial pose. This is a common assumption in multi-robot SLAM, necessary

for the type linearization that is applied both in EKFs and SEIFs [36].

Our simulation involves a team of three air vehicles. The vehicles are not equipped with

GPS; hence they accrue positioning error over time. Figure 14 shows the joint map at differ-

ent stages of the simulation. As in [36], we assume that the vehicles communicate updates

of their information matrices and vectors, enabling them to generate a single, joint map. As

argued there, the information form provides the important advantage over EKFs that communi-

cation can be delayed arbitrarily, which overcomes a need for tight synchronization inherent to

the EKF. This characteristic arises directly from the fact that information in SEIFs is additive,

whereas covariance matrices are not. SEIFs offer over the work in [36] that the messages sent

between vehicles are small. A related approach for generating small messages in multi-vehicle

SLAM has recently been described in [35].

Figure 14 shows a sequence of snapshots of the multi-vehicle system, using 3 different air

vehicles. Initially, the vehicle start our in different areas, and the combined map (illustrated

by the uncertainty ellipses) consists of three disjoint regions. During Steps 62 through 64,

the top two vehicles discover identical landmarks; as a result, the overall uncertainty of their

respective map region decreases; This illustrates that the SEIF indeed maintains the correlations

in the individual landmark’s uncertainties; albeit using a sparse information matrix instead of

the covariance matrix. Similarly, in steps 85 through 89, she third vehicle begins to identical

landmarks also seen by another vehicle. Again, the resulting uncertainty of the entire map is

reduced, as can be seen easily. The last panel in Figure 14 shows the final map, obtained after

500 iterations. This example shows that SEIFs are well-suited for multi-robot SLAM, assuming

that the initial poses of the vehicles are known.

6 Related Work

SEIFs are related to a rich body of literature on SLAM and high-dimensional filtering. Re-

cently, several researchers have developed hierarchical techniques that decompose maps into

collections of smaller, more manageable submaps [1, 2, 11, 22, 46, 55]. While in principle, hi-

erarchical techniques can solve the SLAM problem in linear time, many of these techniques still

require quadratic time per update. One recent technique updates the filter in constant time [22]

by restricting all computation to the submap in which the robot presently operates. Using ap-

proximation techniques for transitioning between submaps, this work demonstrated that consis-

tent error bounds can be maintained with a constant-time algorithm (which is not necessarily

the case for SEIFs). However, the method does not propagate information to previously vis-

ited submaps unless the robot subsequently revisits these regions. Hence, this method suffers

a slower rate of convergence in comparison to the O(N 2) full covariance solution. Alternative

methods based on decomposition into submaps, such as the sequential map joining techniques

described in [46, 56] can achieve the same rate of convergence as the full EKF solution, but

incur an O(N 2) computational burden.



A different line of research has relied on particle filters for efficient mapping [10]. The

FastSLAM algorithm [15, 27, 28] and earlier related mapping algorithms [31, 48] require time

logarithmic in the number of features in the map, but they depend linearly on a particle-filter

specific parameter (the number of particles). There exists now evidence that a single particle

may suffice for convergence in idealized situations [27] , but the number of particles required

for handling data association problems robustly is still not fully understood. More recently, thin

junction trees have been applied to the SLAM problem by Paskin [38]. This work establishes a

viable alternative to the approach proposed here, with somewhat different computational prop-

erties. However, at the present point this approach lacks an efficient technique for making data

association decisions.

As noted in the introduction of this article, the idea of representing maps by relative infor-

mation has previously been explored by a number of authors, most notably in recent algorithms

by Newman [37] and Csorba [7, 8]; it is also related to an earlier algorithm by Lu and Mil-

ios [24, 14]. Newman’s algorithm assumes sensors that provide relative information between

multiple landmarks, which enables it to bypass the issue of sparsification of the information

matrix. The work by Lu and Milios uses robot poses as the core representation, hence the size

of the filter grows linearly over time (even for maps of finite size). As a result, the approach is

not applicable online. However, the approach by Lu and Milios relies on local links between

adjacent poses, similar to the local links maintained by SEIFs between nearby landmarks. It

therefore shares many of the computational properties of SEIFs when applied to data sets of

limited size.

Just as in recent work by Nettleton et al. [36], our approach is based on the information

form of the EKF [26], as noted above. However, Nettleton and colleagues focus on the issue

of communication between multiple robots; as a result, they have not addressed computational

efficiency problems (their algorithm requires O(N3) time per update). Relative to this work,

a central innovation in SEIFs is the sparsification step, which results in an increased computa-

tional efficiency. A second innovation is the amortized constant time recovery of the map.

As noted above, the information matrix and vector estimated by the SEIF defines a Gaussian

Markov random field [54] (GMRF). As a direct consequence, a rich body of literature in infer-

ence in sparse GMRFs becomes directly applicable to a number of problems addressed here,

such as the map recovery, the sparsification, and the marginalization necessary for data associ-

ation [32, 39, 52]. Also applicable is the rich literature on sparse matrix transformations [12].

7 Discussion

This paper proposed an efficient algorithm for the SLAM problem. Our approach is based on the

well-known information form of the extended Kalman filter. Based on the empirical observation

that the information matrix is dominated by a small number of entries that are found only

between nearby features in the map, we have developed a sparse extended information filter,

or SEIF. This filter enforces a sparse information matrix, which can be updated in constant



time. In the linear SLAM case with known data association, all updates can be performed in

constant time; in the nonlinear case, additional state estimates are needed that are not part of

the regular information form of the EKF. We proposed a amortized constant-time coordinate

descent algorithm for recovering these state estimates from the information form. We also

proposed an efficient algorithm for data association in SEIFs that requires logarithmic time,

assuming that the search for nearby features is implemented by an efficient search tree. The

approach has been implemented and compared to the EKF solution. Overall, we find that SEIFs

produce results that differ only marginally from that of the EKFs, yet at a much improved

computational speed. Given the computational advantages of SEIFs over EKFs, we believe that

SEIFs should be a viable alternative to EKF solutions when building high-dimensional maps.

SEIFs, are represented here, possess a number of critical limitations that warrant future

research. First and foremost, SEIFs may easily become overconfident, a property often referred

to as inconsistent [22, 17]. The overconfidence mainly arises from the approximation in the

sparsification step. Such overconfidence is not necessarily an problem for the convergence of

the approach [28], but it may introduce errors in the data association process. In practice, we did

not find the overconfidence to affect the result in any noticeable way; however, it is relatively

easy to construct situations in which it leads to arbitrary errors in the data association process.

Another open question concerns the speed at which the amortized map recovery converges.

Clearly, the map is needed for a number of steps; errors in the map may therefore affect the over-

all estimation result. Again, our real-world experiments show no sign of noticeable degradation,

but a small error increase was noted in one of our simulated experiments.

Finally, SEIF inherits a number of limitations from the common literature on SLAM. Among

those are the use of Taylor expansion for linearization, which can cause the map to diverge;

the static world assumption which makes the approach inapplicable to modeling moving ob-

jects [53]; the inability to maintain multiple data association hypotheses, which makes the ap-

proach brittle in the presence of ambiguous features; the reliance on features, or landmarks;

and the requirement that the initial pose be known in the multi-robot implementation. Virtually

all of these limitations have been addressed in the recent literature. For example, a recent line

of research has devised efficient particle filtering techniques [15, 28, 31] that address most of

these shortcomings. The issues addressed in this paper are somewhat orthogonal to these limi-

tations, and it appears feasible to combine efficient particle filter sampling with SEIFs. We also

note that in a recent implementation, a new lazy data association methodology was developed

that uses a SEIF-style information matrix to robustly generate maps with hundreds of meters in

diameter [51].

The use of sparse matrices in SLAM offers a number of important insights into the design

of SLAM algorithms. Our approach puts a new perspective on the rich literature on hierar-

chical mapping discussed further above. As in SEIFs, these techniques focus updates on a

subset of all features, to gain computational efficiency. SEIFs, however, composes submaps

dynamically, whereas past work relied on the definition of static submaps. We conjecture that



our sparse network structures capture the natural dependencies in SLAM problems much better

than static submap decompositions, and in turn lead to more accurate results. They also avoid

problems that frequently occur at the boundary of submaps, where the estimation can become

unstable. However, the verification of these claims will be subject to future research. A related

paper discusses the application of constant time techniques to information exchange problems

in multi-robot SLAM [34].

Finally, we note that our work sheds some fresh light on the ongoing discussion on the re-

lation of topological and metric maps, a topic that has been widely investigated in the cognitive

mapping community [6, 18]. Links in SEIFs capture relative information, in that they relate

the location of one landmark to another (see also [7, 8, 37]). This is a common characteristic

of topological map representations [5, 41, 19, 25]. SEIFs also offer a sound method for recov-

ering absolute locations and affiliated posteriors for arbitrary submaps based on these links, of

the type commonly found in metric map representations [29, 45]. Thus, SEIFs bring together

aspects of both paradigms, by defining simple computational operations for changing relative

to absolute representations, and vice versa.
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Appendix: Proofs

Proof of Lemma 1: Measurement updates are realized via (17) and (18), restated here for the

reader’s convenience:

Ht = H̄t + CtZ
−1CT

t (52)

bt = b̄t + (zt − ẑt + CT
t µt)

TZ−1CT
t (53)

From the estimate of the robot pose and the location of the observed feature, the prediction ẑt
and all non-zero elements of the Jacobian Ct can be calculated in constant time, for any of the

commonly used measurement models g. The constant time property follows now directly from

the sparseness of the matrix Ct, discussed already in Section 2.2. This sparseness implies that

only finitely many values have to be changed when transitioning fromH̄t to Ht, and from b̄t to

bt. Q.E.D.

Proof of Lemma 2: For At = 0, Equation (28) gives us the following updating equation for

the information matrix:

H̄t = [H−1
t−1 + SxUtS

T
x ]−1 (54)

Applying the matrix inversion lemma leads to the following form:

H̄t = Ht−1 −Ht−1 Sx[U−1
t + STxHt−1Sx]−1STxHt−1︸ ︷︷ ︸

=:Lt

= Ht−1 −Ht−1Lt (55)

The update of the information matrix, Ht−1Lt, is a matrix that is non-zero only for elements

that correspond to the robot pose and the active features. To see, we note that the term inside



the inversion in Lt is a low-dimensional matrix which is of the same dimension as the motion

noise Ut. The inflation via the matrices Sx and STx leads to a matrix that is zero except for

elements that correspond to the robot pose. The key insight now is that the sparseness of the

matrix Ht−1 implies that only finitely many elements of Ht−1Lt may be non-zero, namely those

corresponding to the robot pose and active features. They are easily calculated in constant time.

For the information vector, we obtain from (28) and (55):

b̄t = [bt−1H
−1
t−1 + ∆̂T

t ]H̄t

= [bt−1H
−1
t−1 + ∆̂T

t ](Ht−1 −Ht−1Lt)

= bt−1 + ∆̂T
t Ht−1 − bt−1Lt + ∆̂T

t Ht−1Lt (56)

As above, the sparseness ofHt−1 and of the vector ∆̂t ensures that the update of the information

vector is zero except for entries corresponding to the robot pose and the active features. Those

can also be calculated in constant time. Q.E.D.

Proof of Lemma 3: The update of H̄t requires the definition of the auxiliary variable Ψt :=

(I +At)
−1. The non-trivial components of this matrix can essentially be calculated in constant

time by virtue of:

Ψt = (I + SxS
T
xAtSxS

T
x )−1

= I − ISx(SxISTx + [STxAtSx]
−1)−1STx I

= I − Sx(I + [STxAtSx]
−1)−1STx (57)

Notice that Ψt differs from the identity matrix I only at elements that correspond to the robot

pose, as is easily seen from the fact that the inversion in (57) involves a low-dimensional matrix.
The definition of Ψt allows us to derive a constant-time expression for updating the infor-

mation matrix H:

H̄t = [(I +At)H
−1
t−1(I +At)

T + SxUtS
T
x ]−1

= [(ΨT
t Ht−1Ψt︸ ︷︷ ︸
=:H′t−1

)−1 + SxUtS
T
x ]−1

= [(H ′t−1)−1 + SxUtS
T
x ]−1

= H ′t−1 −H ′t−1Sx[U−1
t + STxH

′
t−1Sx]−1STxH

′
t−1︸ ︷︷ ︸

=:∆Ht

= H ′t−1 −∆Ht (58)

The matrix H ′t−1 = ΨT
t Ht−1Ψt is easily obtained in constant time, and by the same reasoning

as above, the entire update requires constant time. The information vector b̄t is now obtained as

follows:

b̄t = [bt−1H
−1
t−1 + ∆̂T

t ]H̄t

= bt−1H
−1
t−1H̄t + ∆̂T

t H̄t



= bt−1H
−1
t−1(H̄t +Ht−1 −Ht−1︸ ︷︷ ︸

=0

+H ′t−1 −H ′t−1︸ ︷︷ ︸
=0

) + ∆̂T
t H̄t

= bt−1H
−1
t−1(Ht−1 + H̄t −H ′t−1︸ ︷︷ ︸

−∆Ht

−Ht−1 +H ′t−1) + ∆̂T
t H̄t

= bt−1H
−1
t−1(Ht−1 −∆Ht −Ht−1 +H ′t−1) + ∆̂T

t H̄t

= bt−1 − bt−1H
−1
t−1(∆Ht −Ht−1 +H ′t−1) + ∆̂T

t H̄t

= bt−1 − µTt−1Ht−1H
−1
t−1(∆Ht −Ht−1 +H ′t−1) + ∆̂T

t H̄t

= bt−1 − µTt−1(∆Ht −Ht−1 +H ′t−1) + ∆̂T
t H̄t (59)

The update ∆Ht is non-zero only for elements that correspond to the robot pose or active

features. Similarly, the difference H ′t−1 −Ht−1 is non-zero only for constantly many elements.

Therefore, only those mean estimates in µt−1 are necessary to calculate the product µTt−1∆Ht.

Q.E.D.

Proof of Lemma 4: The mode ν̂t of (41) is given by

ν̂t = argmax
νt

p(νt)

= argmax
νt

exp
{
−1

2
νTt Htνt + bTt νt

}

= argmin
νt

1
2
νTt Htνt − bTt νt (60)

The gradient of the expression inside the minimum in (60) with respect to νt is given by

∂

∂νt

{
1
2
νTt Htνt − bTt νt

}
= Htνt − bTt (61)

whose minimum ν̂t is attained when the derivative (61) is 0, that is,

ν̂t = H−1
t bTt (62)

From this and Equation (40) it follows that ν̂t = µt. Q.E.D.


