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Abstract

This paper presents a new filter for online data associatiohlgms in
high-dimensional spaces. The key innovation is a repraentof the
data association posterior in information form, in whicle tiproxim-

ity” of objects and tracks are expressed by numerical linkpdating

these links requires linear time, compared to exponentrad tequired
for computing the exact posterior probabilities. The pagenives the
algorithm formally and provides comparative results uslata obtained
by a real-world camera array and by a large-scale sensooriesimu-

lation.

1 Introduction

This paper addresses the problem of data association imeaoiiject tracking [6]. The data
association problem arises in a large number of applicat@nains, including computer
vision, robotics, and sensor networks.

Our setup assumes an online tracking system that receive/pes of datasensor
data, conveying information about the identity or type of obgetttat are being tracked; and
transition data characterizing the uncertainty introduced through theker’s inability to
reliably track individual objects over time. The setup istiveited by a camera network
which we recently deployed in our lab. Here sensor dataaglat the color of clothing of
individual people, which enables us to identify them. Traake lost when people walk too
closely together, or when they occlude each other.

We show that the standard probabilistic solution to therdiscdata association prob-
lem requires exponential update time and exponential mgnTdris is because each data
association hypothesis is expressed by a permutationntladti assigns computer-internal
tracks to objects in the physical world. An optimal filter vidtherefore need to maintain
a probability distribution over the space of all permutatioatrices, which grows expo-
nentially with V, the number of objects in the world. The common remedy ire®lthe
selection of a small numbét of likely hypotheses. This is the core of numerous widely-
used multi-hypothesis tracking algorithms [9, 1]. Moreartsolutions involve particle
filters [3], which maintain stochastic samples of hypotlsed&oth of these techniques are
very effective for small N, but the number of hypothesis theguire grows exponentially
with N.

This paper provides a filter algorithm that scales to muofpelaproblems. This filter
maintains an information matriR of size N x NN, which relates tracks to physical objects
in the world. The rows of2 correspond to object identities, the columns to the tratkiseo
tracker.Q2 is a matrix ininformation form that is, it can be thought of as a non-normalized
log-probability.

Fig. 1a shows an example. The highlighted first column cpomrds to track 1 in
the tracker. The numerical values in this column suggestthis track is most strongly
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(e) Graphical network interpretation of the information form

Figure 1: lllustration of the information form filter for data assatibn in object tracking

associated with objed, since the valud0 dominates all other values in this column.
Thus, looking at column of Q in isolation would have us conclude that the most likely
association of track 1 is object 3. However, the most likedynputation matrix is shown
in Fig. 1b; from all possible data association assignmehis matrix receives the highest

score. Its score isr ATQ = 5 + 12 + 11 4+ 15 = 43 (here ‘tr” denotes the trace of a
matrix). This permutation matrix associates object 3 wititk 4, while associating track
1 with object 4.

The key question now pertains to the constructiof2ofAs we shall see, the update
operations for) are simple and parallelizable. Suppose we receive a measuotahat
associates track 2 with object 4 (e.g., track 2's hair cofgreaars to be the same as person
4’s hair color in our camera array). As a result, our appraaids a value to the elementin
Q that links object 4 and track 2, as illustrated in Fig. 1c @kact magnitude of this value
will be discussed below). Similarly, suppose our trackarriable to distinguish between
objects 2 and 3, perhaps because these objects are so ¢Jeieetan a camera image that
they cannot be tracked individually. Such a situation le¢adsnew information matrix, in
which both columns assume the same values, as illustratéid.iid. The exact values in
this new information matrix are the result of an exponeatiaveraging explained below.
All of these updates are easily parallelized, and hence gpécable to a decentralized
network of cameras. The exact update and inference rulebaamed on a probabilistic
model that is also discussed below.

Given the importance of data association, it comes as naisarhat our algorithm is
related to a rich body of prior work. The data associatiorbfmm has been studied as an
offlineproblem, in which all data is memorized and inference takasepafter data collec-
tion. There exists a wealth of powerful methods, such as RAGIE] and MCMC [6, 2],
but those are inherently offline and their memory requireima@rcrease over time. The
dominant online, or filter, paradigm involves the selectan/ representative samples
of the data association matrix, but such algorithms tendddkwnly for small NV [11].
Relatively little work has focused on the development of pawt sufficient statistics for
data association. One alternati¥¢/N?) technique to the one proposed here was explored
in [8]. This technique uses doubly stochastic matricesctviare computationally hard to
maintain. The first mention of information filters is in [8Jutthe update rules there were



computationally less efficient (i@(N*)) and required central optimization.

The work in this paper does not address the continuous-dasigects of object track-
ing. Those are very well understood, and information regrtions have been success-
fully applied [5, 10].

Information representations are popular in the field of bregd networks. Our ap-
proach can be viewed as a learning algorithm for a Markov oet\7] of a special topol-
ogy, where any track and any object are connected by an edgh.éhetwork is shown in
Fig. 1e. The filter update equations manipulate the streofgte edges based on data.

2 Problem Setup and Bayes Filter Solution

We begin with a formal definition of the data association eoband derive the obvious
but inefficient Bayes filter solution. Throughout this papse make the closed world
assumption, that is, there are always the safmeown objects in the world.

2.1 Data Association

We assume that we are given a tracking algorithm that maisfsiinternal tracks of the
moving objects. Due to insufficient information, this assahtracking algorithm does not
always know the exact mapping of identities to internalkeacHence, the same internal
track may correspond to different identities at differames.

The data association problem is the problem of assignirggtNetracks toN objects.
Each data association hypothesis is characterized by ajetion matrix of the type shown
in Fig. 1b. The columns of this matrix correspond to the in&ktracks, and the rows to
the objects. We will denote the data association matrixibyot to be confused with the
information matrix(2). In our closed world A is always a permutation matrix; hence all
elements are 0 or 1. There are exponentially many permautatadrices, which is a reason
why data association is considered a hard problem.

2.2 Identity Measurement

The correct data association matrixis unobservable. Instead, the sensors produce local
information about the relation of individual tracks to imidiual objects. We will denote
sensor measurements by, wherej is the index of the corresponding track. Eagh=
{#;} specifies a local probability distribution in the corresgimy object space:

px; = Yj | Zj) = zj with Zzij =1 (1)

Herexz; is thei-th object in the world, ang; is the;-th track.

The measurement in our introductory example (see Fig. 1s)ofia special form, in
that it elevated one specific correspondence over the otfibis occurs when;; = « for
somea ~ 1, andzy; = ﬁ for all £ # i. Such a measurement arises when the tracker
receives evidence that a specific tragkcorresponds with high likelihood to a specific
objectz;. Specifically, the measurement likelihood of this corregfence isy, and the
error probability isl — «.

2.3 State Transitions

As time passes by, our tracker may confuse tracks, which ass of information with
respect to the data association. The tracker confusing bigrts amounts to a random flip
of two columns in the data association matdix

The model adopted in this paper generalizes this examphbiiaxy distributions over
permutations of the columns iA. Let {B;,..., By} be a set of permutation matrices,
and{gi,...,Bm} with >~ 3, = 1 be a set of associated probabilities. The “true” per-
mutation matrix undergoes a random transition frdrto A B,,, with probability 3,,,:

A prOb—:?m A Bm (2)



The set§ By, ..., By} and{f,...,Ba} are given to us by the tracker. For the example
in Fig. 1d, in which tracks 2 and 3 merge, the following two mpatation matrices will
implement such a merge:

1 0 0 O 1 0 0 O
01 0 0 0 0 1 0

B, = 00 1 0 ;51 =0.5 By = 01 0 0 ;52 =0.5 (3)
0 0 0 1 0 0 0 1

The first such matrix leaves the association unchanged palé¢he second swaps columns
2 and 3. Sincg; = (B2 = 0.5, such a swap happens exactly with probability 0.5.

2.4 Inefficient Bayesian Solution

For smallN, the data association problem now has an obvious Bayessfillgtion. Specif-
ically, let.A be the space of all permutation matrices. The Bayesiandittwes the identity
tracking problem by maintaining a probabilistic belief o¥ee space of all permutation
matricesA € A. For eachd, it maintains a posterior probability denote@4). This prob-
ability is updated in two different ways, reminiscent of theasurement and state transition
updates in DBNs and EKFs.

The measurement step updates the belief in response to amae@sitz;. This update
is an application of Bayes rule:

p(4) — % p(4) Z ij Zij 4
with L = Z p(A) Zﬁij Zij (5)
i i

Herea;; denotes thej-th element of the matrixl. BecauseA is a permutation matrix,

only one element in the sum ovieis non-zero (hence there is not really a summation here).
The state transition updates the belief in accordance Wélpermutation matrices,,,

and associated probabilitigs, (see Eq. 2):

p(A) «— > Bmp(ABL) (6)

We use here that the inverse of a permutation matrix is itspase.

This Bayesian filter is an exact solution to our identity kiag problem. Its problem is
complexity: there ar&V! permutation matriced, and we have to compute probabilities for
all of them. Thus, the exact filter is only applicable to peyhk with smallV. Even if we
want to keep track o < N likely permutations—as attempted by filters like the multi-
hypothesis EKF or the particle filter—the required numbdratks K will generally have
to scale exponentially wittV (albeit at a slower rate). This exponential scaling rentters
Bayesian filter ultimately inapplicable to the identitydking problem with largéeV.

3 The Information-Form Solution

Our data association filter represents the posterior in@osed form, using aiv x N in-
formation matrix. As a result, it requires linear updategiand quadratic memory, instead
of the exponential time and memory requirements of the Béijes

However, we give two caveats regarding our method: it is @dprate, and it does not
maintain probabilities. The approximation is the resulaafensen approximation, which
we will show is empirically accurate. The calculation of pabilities from an information
matrix requires inference, and we will provide several@mifor performing this inference.

3.1 The Information Matrix

The information matrix, denoteq, is a matrix of sizeNV x N whose elements are non-
negative 2 induces a probability distribution over the space of albdegsociation matrices



A, through the following definition:
p(A) = 1 exptrAQ with Z = Z exptr A Q @)
Z A

Heretr is the trace of a matrix, and is the partition function.

Computing the posterior probabilipf A) from €2 is hard, due to the difficulty of com-
puting the partition functior. However, as we shall see, maintainiiigs surprisingly
easy, and it is also computationally efficient.

3.2 Measurement Update in Information Form
In information form, the measurement update is a local axdif the form:
0---0 logzi; 0---0
Q — Q4+ . : N (8)
00 log.le 00

This follows directly from Eq. 4. The complexity of this ugdasO(N).

Of particular interest is the case where one specific agtmtiaas affirmed with prob-
ability z;; = «, while all others were true with the error probability; = +=2. Then the

update is of the form -

l1—«

Q «— Q+ N1

with ¢ =log

9)

0---0 c 0---0
However, since is a non-normalized matrix (it is normalized via the pastitfunctionZ

in Eq. 7), we can modify) as long axptr A Q is changed by the same factor for any
A. In particular, we can subtracfrom an entire column ifi2; this will affect the result of
exp tr A Q by a factor ofexp ¢, which is independent o and hence will be subsumed by
the normalizeZ. This allows us to perform a more efficient update

11—«
N -1
wherew;; is theij-th element of). This update is indeed of the form shown in Fig. 1c. It

requiresD(1) time, is entirely local, and is an exact realization of Bagée in information
form.

(10)

wij «— wj; +loga —log

3.3 State Transition Update in Information Form

The state transition update is also simple, but it is appnaxé. We show that using a
Jensen bound, we obtain the following update for the inféionanatrix:

Q — log > Bm Bl expQ (11)

Here the expressiorep 2" denotes a component-wise exponentiation of the marix
the result is also a matrix. This update implements a “dufild geometric mean; here
the exponentiation is applied to the individual elementthif mean, and the logarithm is
applied to the result. It is important to notice that this afgdonly affects elements i
that might be affected by a permutati®,; all others remain the same.

A numerical example of this update was given in Fig. 1d, agsgrthe permutation
matrices in Eq. 3. The values there are the result of applghiggupdate formula. For
example, for the first row we géig %(exp 12 + exp4) = 11.3072.



The derivation of this update formula is straightforwarde Wegin with Eq. 6, writ-
ten in logarithmic form. The transformations rely heavily thhe fact thatd and B,,, are
permutation matrices. We use the symbiaf* for a multiplicative version of the matrix
trace, in which all elements on the diagonal are multiplied.

logp(A) «— logy_ fm p(AB})
= const. + log Z Bm exptr A Bﬁ Q
= const. + log Z Bm tr*exp A Bﬁ Q

= const. + log Z Bm tr* A Bﬁ exp )

IN

const. + log tr* A Z B BL expQ

= const. +tr A |log Z Bm BL expQ (12)
The resultis of the form of (the logarithm of) Eq. 7. The exgsien in brackets is equivalent
to the right-hand side of the update Eq. 11. A benefit of thdat@rule is that it only affects
columns in) that are affected by a permutatié#,; all other columns are unchanged.

We note that the approximation in this derivation is the ltestiapplying a Jensen

bound. As a result, we gain a compact closed-form solutidheaipdate problem, but the
state transition step may sacrifice information in doinga®ifidicated by the<” sign).
In our experimental results section, however, we find thigtapproximation is extremely
accurate in practice.

4 Computing the Data Association

The previous section formally derived our update rules,ciwtdre simple and local. We
now address the problem of recovering actual data assatiayipotheses from the infor-
mation matrix, along with the associated probabilities.

We consider three cases: the computation of the most likely dssociation matrix as
illustrated in Fig. 1b; the computation of a relative protigbof the form p(A)/p(A’); and
the computation of an absolute probability or expectation.

To recoverrgmax 4, p(A4), we need only solve a linear program.

Relative probabilities are also easy to recover. Consfdeexample, the quotient of
the probabilityp(A4)/p(A’) for two identity matricesA and A’. When calculating this
quotient from Eq. 7, the normalizef cancels out:

p(4)
p(A)
Absolute probabilities and expectations are generallyntiost difficult to compute.
This is because of the partition functighin Eq. 7, whose exact calculation requires con-
sideringN'! permutation matrices.

Our approximate method for recovering probabilities/etatons is based on the
Metropolis algorithm. Specifically, consider the expdotabf a functionf:

E[f(A)] = Y f(A) p(A) (14)
A

exptr(4 —A") Q (13)

Our method approximates this expression through a finitgpkaaf matricesA !, AR .|
using Metropolis and the proposal distribution defined in E2} This proposal generates
excellent results for simple functiorfs(e.g., the marginal of a single identity). For more



(a) camera (b) array of 16 ceiling-mounted cameragc) camera images (d) 2 of the tracks

Figure 2. The camera array, part of the common area in the Stanforda@l [Panel (d) compares
our esitmate with ground truth for two of the tracks. The degsociation is essentially correct at all
times.

(a) Comparisonk -hypothesis vs. (b) Comparison using a DARPA challenge
information-theoretic tracker data set produced by Northrop Grumman
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Figure 3: Results for our approach information-form filter the commmoulti-hypothesis approach
for (a) synthetic data and (b) a DARPA challenge data set. cbBmeparison (b) involves additional
algorithms, including one published in [8].

complex functionsf, we refer the reader to improved proposal distributionshlaae been
found to be highly efficient in related problems [6, 2].

5 Experimental Results

To evaluate this algorithm, we deployed a network of ceilingunted cameras in our lab,
shown in Fig. 2. We used 16 cameras to track individuals waglithrough the lab. The
tracker uses background subtraction to find blobs and usetoatistogram to classify
these blobs. Only when two or more people come very close ¢h ether might the
tracker lose track of individual people. We find that fér= 5 our method tracks people
nearly perfectly, but so does the full-blown Bayesian sotutas well as thé{-best multi-
hypothesis method that is popular in the tracking litematur

To investigate scaling to largé¥, we compared our approach on two data sets: a syn-
thetic one with up tadV = 1, 600 objects, and a dataset using an sensor network simulation
provided to us by Northrop Grumman through an ongoing DARPR#gpam. The latter
set is thought to be realistic. It was chosen because itwegch large numbefN = 200)
of moving objects, whose motion patterns come from a behavinodel. In all cases,
we measured the number of objects mislabeled in the maxirnkatihlood hypothesis (as
found by solving the LP). All results are averaged over 5Grun

The comparison in Fig. 3a shows that our approach outpesftimtraditionals -best
hypothesis approach (withih = N) by a large margin. Furthermore, our approach seems
to be unaffected byv, the number of entities in the environment, whereas thetioadl
approach deteriorates. This comes as no surprise, sind¢eattifonal approach requires
increasing numbers of samples to cover the space of all datacations. The results in
Fig. 3b compare (from left to right), the most likely hyposi®e the most recent sensor
measurement, th& -best approach witli{ = 200, an approach proposed in [8], and our
approach. Notice that this plot is in log-form.



No comparisons were attempted with offline techniques, siscthe ones in [4, 6],
because the data sets used here are quite large and oustirgenaline filtering.

6 Conclusion

We have provided an information form algorithm for the degsagiation problem in object
tracking. The key idea of this approach is to maintain a catingd matrix of information
associating computer-internal tracks with physical ofsjetJpdating this matrix is easy;
furthermore, efficient methods were proposed for extrgationcrete data association hy-
potheses from this representation. Empirical work usingspal networks of camera ar-
rays illustrated that our approach outperforms alteregti@radigms that are commonly
used throughout all of science.

Despite these advances, the work possesses a number afilimit Specifically, our
closed world assumption is problematic, although we beltbe extension to open worlds
is relatively straightforward. Also missing is a tight igtation of our discrete formula-
tion into continuous-valued traditional tracking alghnits such as EKFs. Such extensions
warrant further research.

We believe the key innovation here is best understood fronajptgcal model perspec-
tive. SamplingK good data associatiomsnnotexploit conditional independence in the
data association posterior, hence will always require iias an exponential function of
N. The information form and the equivalent graphical netwiarkig. 1e exploits condi-
tional independences. This subtle difference makes itiplesto get away withO(N?)
memory andD(N) computation without a loss of accuracy wh&hnincreases, as shown
in Fig. 3a. The information form discussed here—and thecataa graphical networks—
promise to overcome a key brittleness associated with threrustate-of-the-art in online
data association.
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