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Abstract—This paper presents a probabilistic algorithm for simul-
taneously estimating the pose of a mobile robot and the positions of
nearby people in a previously mapped environment. This approach,
called the conditional particle filter, tracks a large distribution of peo-
ple locations conditioned upon a smaller distribution of robot poses
over time. This method is robust to sensor noise, occlusion, and un-
certainty in robot localization. In fact, conditional particle filters
can accurately track people in situations with global uncertainty over
robot pose. The number of samples required by this filter scales lin-
early with the number of people being tracked, making the algorithm
feasible to implement in real-time in environments with large num-
bers of people. Experimental results illustrate the accuracy of track-
ing and model selection, as well as the performance of an active fol-
lowing behavior based on this algorithm.

I. INTRODUCTION

S robots are deployed in everyday human environ-

ments, they will be called upon to perform increas-
ingly interactive tasks. Interaction between humans and
robots may occur in a variety of different ways, such as
spoken dialog, physical interaction, or the collaborative ex-
ecution of a task. In order for robots in social environments
to be successful, they must be able to both observe and
model the behavior of the humans they are working along-
side.

Interactive navigational tasks, such as leading, follow-
ing, intercepting, and avoiding people, require the ability
to track human motion. While this paper will concentrate
solely on the application of tracking the movement of peo-
ple in the vicinity of a mobile robot, the results are appli-
cable to a broader class of estimation problems.

The majority of prior approaches to people-tracking
have been appearance-based methods. These methods
attempt to detect the appearance of people in sensors
and track these features over time. Many examples of
appearance-based people-tracking have used cameras as
the primary sensor [?], [?], however laser range finders
have also been used [?]. The accuracy of this approach is
limited primarily by the accuracy of feature detection algo-
rithms. In particular, drastic variations in a person’s image
caused by changes in illumination, viewing angle, and in-
dividual appearance make robust detection using vision an
extraordinarily difficult problem.
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Mobile robots operating in fixed environments fre-
quently have maps of their surroundings. By describing the
vast majority of objects in the world that are not people,
maps provide considerable information that can be used
to explain individual sensor readings. By comparing the
movement of sensor readings that do not correspond with
objects in the map against models of human motion, unex-
pected readings can be used to identify and track people in
a very robust manner.

Before maps can be used to categorize the origin of a
robot’s sensor readings, the pose of the robot relative to
that map must be known to some degree. Indeed, local-
ization and map-based people-tracking represent two sides
of the same coin. If a robot’s exact position in a map
is known, determining which sensor readings correspond
with objects in the map is a trivial exercise. Conversely, if
the sensor readings that correspond with people and other
unmapped objects can be filtered out, the true pose of the
robot can be determined with maximum accuracy. When
the pose of the robot and the positions of people in the map
are both unknown, people-tracking and robot localization
become a joint estimation problem.

To illustrate this point, consider a mobile robot operat-
ing in the map shown in Figure 1(a). When situated in
Door #1 facing into the hallway, the robot sees a person
and acquires the laser scan shown in Figure 1(b). When
the robot is facing out of Door #2, the robot sees a mapped
trash-bin and acquires the laser scan shown in Figure 1(c).
While the two laser scans look remarkably similar, they
represent significantly different hypotheses. A localization
algorithm that does not consider the first hypothesis may
confuse the person for the trash-bin. A people-tracking al-
gorithm that does not consider the second hypothesis may
track the trash-bin as a person.

This paper will present a probabilistic algorithm for si-
multaneously estimating the pose of a robot and the lo-
cations of nearby people in a previously mapped environ-
ment. By approximating this joint distribution as a large
set of particles representing people locations conditioned
upon a smaller set of particles representing robot pose, the
expressive power of the joint hypothesis can be exploited
in a way that is still computationally tractable. The re-
sulting algorithm, called a conditional particle filter, is ro-
bust to sensor noise, occlusion, and uncertainty in localiza-
tion. Results will demonstrate simultaneous localization
and people-tracking in situations with global uncertainty.
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Il. MATHEMATICAL APPROACH
A. Introduction to Particle Filters

Particle filters have been applied with great success to
many real world estimation and tracking problems, as
documented by various chapters in [?]. Within robotics,
common applications involve the localization of mobile
robots [?], [?] or of other mobile entities such as people,
from camera images [?] and range scans [?].

From a mathematical perspective, particle filters esti-
mate the posterior over unobservable state variables from
sensor measurements. In the context of the present paper,
state refers to the pose of the robot (location and orien-
tation) relative to its environment, along with the number
and location of people in the robot’s proximity. For the
sake of the general discussion of particle filters, the total
of all those state variables will be denoted by z; further be-
low, this will be made more concrete by including the robot
pose and people locations as explicit components of z.

In particular, let the state at time ¢ be denoted by x;.
Particle filters address situations in which this state is not
directly observable. Instead, the robot must rely on sensor
measurements and information about the controls it exe-
cutes to infer the posterior distribution over x. Let z, de-
note the sensor measurement acquired at time ¢ and u; de-
note the control at time ¢. Thus at time ¢, two types of in-
formation relevant to the state z; are available to the robot.

28 = a1, 2}
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The goal of particle filtering is to estimate the posterior
probability over the state variable z at time ¢:
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This posterior is calculated recursively (see [?], [?] for a
derivation):

p<$t|zt7ut> = (3)
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Fig. 1. (a) Therobot isin one of two doorways. Isit in front of (b) Door #1 looking at a person? or (c) Door #2 looking at a trash-bin?

Here 7 is a constant normalizer. The conditional prob-
ability distribution p(z¢|z;) is a measurement model that
will be discussed further in Section II-D.  Similarly,
p(xt|ut, x4—1) is @ motion model whose discussion will
be postponed to Section II-E. The recursive update equa-
tion (3) is equivalent to the well-known Bayes filters, from
which Kalman filters and hidden Markov models are easily
derived as special cases.

The key idea of the particle filter is to approximate this
posterior by set of hypothesized states—called particles—
which are distributed according to p(x¢|2¢, u?). Put math-
ematically, p(z;|2%,u) is represented by a set of particles

Xy o= oMo N 4)
where N is the size of the particle set (e.g. N = 1,000).
It is well-known that such a set of particles X; can be ob-
tained via the following sampling procedure, which is di-
rectly derived from the recursive update equation (3).

X, =0
fori=1to N do
take xﬂl from X;_;
draw a:l[ti] ~ p(a¢|ug, x,[f]_l)
calculate (non-normalized) weight wi” = p(z|z")
endfor
fori=1to N do
draw % with probability w1 / STV wlY
add x,[f] to X;
endfor

In essence, this procedure utilizes the particle set X;_; to
generate a set of particles {x,[f]} that represent the guess
at time ¢ after executing control u;, but before taking into
consideration the measurement z;. Subsequently, the pro-
cedure resamples those guesses in proportion to the percep-
tual probability p(z|2}"). This simple algorithm has been
shown to converge to the desired posterior p(z;|2z¢, ut) as
N — oo.



B. Factored Representations

When particle filters are applied to the problem of
people-tracking, the state of the world x is comprised of
a set of people locations:

Ty = {yt,la Yt,25 .- - 7yt,M} (5)

Here M denotes the number of people, which is assumed
to be known for now. A simple approach to estimating M
will be presented in Section I1-F.

The general problem with using this state vector lies in
its dimensionality. The number of particles required in par-
ticle filtering grows exponentially with the size of the state
vector, and hence with M. Tracking many people is there-
fore infeasible with such an approach. The feature-based
people-tracking literature usually overcomes this problem
by tracking individual people using separate filters [?]. The
computation in such an approach grows linearly with the
number of people M. The underlying mathematical as-
sumption is that the posterior of people locations can be
factored as follows:

M
PWetsye2s -yl ut) = T p(yeml2'u’)  (6)
m=1

Such a decomposition would be mathematically legitimate
under two conditions: People move independently, and the
robot can reliably identify individual people (i.e., there is
no data association problem). The first assumption is usu-
ally a good approximation. The second is overcome by us-
ing a maximum likelihood method for the data association;
that is, each person observation is assigned to the nearest
person track. In this way, conventional feature-based peo-
ple trackers can reliably track people in a way that scales
linearly with M.

C. The Conditional Particle Filter

The total factorization (6) works well for feature-based
tracking approaches such as the one in [?], but it fails to ap-
ply to map-based tracking. Different poses of a robot rel-
ative to a map can lead to very different interpretations of
sensor measurements, as was illustrated in Figure 1. Thus,
the state vector x, is defined as follows:

Ty = {rtayt,lvyt,Qv"'7yt,M} (7)

Here r; denotes the robot’s pose at time ¢, and 1, ..., yar
denote the locations of the M people, as above. At fist
glance, one might try to factor the posterior just like the
feature-based tracking approach:

M
plalz' ut) = plrelz",ul) T p(yemle’,u’)  (8)

m=1
However, this factorization does not work in situations
where the robot’s pose r, is uncertain. This is because
there are interactions between the robot pose estimate r;
and the people location estimates; depending where the

robot is, sensor measurements may be explained by peo-
ple or by known objects in the map. The fully factored
representation (8) will not capture such dependencies and
will therefore fail in practice.

The conditional particlefi Iter overcomes this problem
by using the following representation:

M
p($t|zt7 ut) = p(rt|zt7 ut) H p(yt,7rb|rt7 Zta ut) (9)
m=1

The key difference is that the people pose estimates
p(yt,m|re, 2*,u) are now conditioned on r;, the robot
pose. Thus, our approach factors the desired posterior into
a product of a robot pose posterior p(r; |z, u!) and a prod-
uct of conditional posteriors p(y,m|r:, 2*, u'), which are
conditioned on the robot pose r,. By doing so, dependen-
cies between the robot pose estimate and people location
estimates are fully considered, while still maintaining the
linear complexity of the basic algorithm in the number of
people M.

Conditional particle filters represent both types of pos-
teriors using separate sets of particles. The (unconditional)
robot pose posterior p(r;|2%, ut) is represented by a parti-
cle set R; of robot poses rt’], just as in plain particle fil-
tering. The conditional distributions p(yy . |r¢, 2%, u') are
also represented by particle sets, where each particle set
Y,E],t is attached to one particular robot particle TF] . Put dif-
ferently, if there are NV,. particles representing the posterior
of the robot pose, there will be V,. particle sets represent-
ing the posterior over a people position conditioned on the
robot pose. Each such particle will be denoted yt“,fj The
resulting conditional particle filter algorithm is outlined in
turn:

Rt:YI,t:--~:YM7t:®
fori=1to N, do

take rﬂl from R;_

sample ’/‘F] ~ p(re|ue, rﬂl)

forj =1to N, do

form =1to M do
take y7[:1j]f—1 from Y7£:],t—1
[24]

sample ykzj,]t ~ p(ym,t Ut, ym,t—l)
endfor
wlidl = p(z |yl bl
endfor

forj =1to N, do
select k with probability w!(i* / S il
form = 1to M add y}jfl to Yn[ﬂt
endfor
wll = YN 4yld]
endfor
fori=1to N, do
select k with probability wl / S wl!
add ry“] to R,
endfor



Obviously, the resulting number of particles is much larger
than in the plain particle filter. However, this approach still
can be run in real-time. The primary advantage of this
approach is that dependencies between people and robot
estimates are fully maintained (a prerequisite for using a
map in people-tracking), while different people are tracked
using independent filters. The latter property guarantees
linear computational complexity of the overall approach.

Four issues must be resolved before map-based people-
tracking can be implemented with a conditional particle
filter. The form of the measurement model and the mo-
tion model, both described in Section 11-A, must be deter-
mined. These models describe how the conditional parti-
cle filter responds to new sensor observations and actions.
A procedure for data association must be established, so
that new sensor readings can be assigned to the appropri-
ate people filters. Finally, the question of model selection
must be addressed. For a given robot pose, a procedure for
determining the correct number of people M must be de-
termined. These issues will be discussed in the following
four sections.
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Fig. 2. A dight mismatch between the true position of a person and the
hypothesized position leads to alarge range disparity. This disparity
signifi cantly decreases the probability of the scan.
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D. Measurement Model

The form of measurement model p(z; \rf[f], yg”t] . ygfj]t
can have important consequences for the performancé
of the conditional particle filter for map-based people-
tracking. This model characterizes the probability of re-
ceiving a sensor reading given a description of the state
of the world. In other words, this model compares what
the robot actually senses against what it should “expect” to
sense given the hypothesized state. Typically, this model is
based upon the physics of the real-world sensor being used
and its interaction with the environment.

The robot that was used to demonstrate this algorithm
used a 2-D laser range finder as its primary sensor. Using
the physics-based approach, humans in laser scans can be
modeled as approximately cylindrical. The measurement
model can be calculated by comparing the actual laser scan
with a laser scan ray-traced from the hypothesized robot
position in the map. Unfortunately, small differences be-
tween the true and hypothesized people positions can cause
a large difference in the probability of a given laser scan.

)

Consider the situation shown in Figure 2. A laser measure-
ment, expected to pass by the hypothesized person, actu-
ally hits the person. This large disparity in distance causes
the range reading, and thus the entire laser scan, to receive
very low probability. This lack of smoothness in this mea-
surement model mandates that a larger number of particles
be used to accurately represent the posterior distribution
over time [?].

The sensor model can be made much smoother by cal-
culating probabilities based on disparities in x-y space in-
stead of disparities in range. To calculate the probability of
a given robot pose, the laser points are first projected into
the world according to the hypothesized pose of the robot.
The probability of each point is then computed based on
the Euclidean distance between that point and the closest
object, be it a person or a occupied map cell. Using this
sensor model, the mismatched point in Figure 2 would re-
ceive a high probability because it is close to the hypothe-
sized person. The careful construction of a smooth sensor
model significantly decreases the number of samples nec-
essary to achieve a particular tracking accuracy.

E. Motion Model

i]

The motion models p(ry |y, 7™ |) and p(yym.¢ |, y%{Ll)
predict the movement over time of the robot and of people,
respectively. The model of robot motion given odometry
data is well understood. This model was taken directly
from [?]. However, no information analogous to odometry
is available to describe the actions taken by people in the
world. Instead, Brownian motion was used as a model of
a person’s typical motion. This model predicts that a per-
son can travel in any direction at any time, an assumption
that is clearly false. However, using this overly conserva-
tive model avoids the need to estimate the velocities and
accelerations of people, in addition to their positions. The
relatively weak constraint that this model puts on human
motion ensures that it will not be violated by people who
change direction quickly. This model has shown to work
well in practice.

F. Data Association

As a consequence of breaking the estimation of people
locations into separate particle filters for each person, each
sensor reading must be associated with a particular filter
or filters before the weights of each particle can be cal-
culated. If every sensor reading contributed evidence into
every people filter, all M filters would track the one most
probable person. This association can be a hard assign-
ment, in which each reading is attributed to only one of the
person filters or to the map, or it can be a soft assignment,
in which each reading can be partially assigned to multiple
filters.

When two person filters are far away from each other,
the difference between the hard and soft assignment strate-
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Fig. 3. Laser points are associated with person fi Iters using a modifi ed
nearest neighbor rule based on the sample means of each fi Iter. Points
more than three standard deviations away from all fi Iters are consid-
ered outliers and remain unassigned.

gies is minimal. However, when two filters are very close
to each other, experimental results show that soft assign-
ment tends to lump the two filters together. Both filters
accept approximately 50 percent assignment of all sensor
readings originally associated with the two independent fil-
ters. Hard assignment continues to provide good discrim-
ination between the two particle filters even as the means
move very close together.

The actual assignment for each laser point is determined
using a modified nearest neighbor rule. First, the means
and standard deviations of the particles in each person fil-
ter are computed. Each laser point is associated with the
filter with the closest mean particle, assuming it is within
three standard deviations. If the point is more three stan-
dard deviations from every filter, it is considered an outlier
and not assigned to any class. This procedure is illustrated
in Figure 3.

G. Model Selection

The people filters operate on the assumption that the true
number of people in the world, M, is known. In prac-
tice, choosing an appropriate value of M can be a difficult
proposition. People are constantly occluding each other
in the robot sensor’s field-of-view, especially as they walk
very close to the robot. If a person is temporarily occluded
by another person, M should not change. However, peo-
ple also move in and out of the field-of-view of the robot
in a permanent way, going around corners and into offices.
When a person disappears for an extended period of time,
the people filters should respond by decreasing M.

One approach to determining M is to create a prior prob-
ability distribution over typical values of M and choose the
M at every time step that corresponds with the Minimum
Description Length hypothesis. This approach will add a
new filter only if it results in a significant gain in the overall
probability of the model.

However, this approach requires that multiple instances
of every particle filter be run with different values of M. As
a result, a great deal of computation is spent on filters that

do not represent the true state of the world. This approach
can be approximated in a practical manner by examining
the associations of laser points and people filters. A cluster
of sensor readings that are not associated with any filter in-
dicates that M is too small. A filter that has no laser points
associated with it for an extended period of time indicates
that M is too large. Experimental results described in the
next section illustrate that heuristics based on the laser as-
sociations can be used to determine M with high accuracy
at a very low computational cost.

I1l. EXPERIMENTAL RESULTS
A. Tracking and Model Selection Accuracy

The conditional particle filter was tested on a mobile
robot equipped with a 2-D laser range finder operating in
an office environment. Figure 4(a) shows a typical laser
scan given to the algorithm, and Figure 4(b) shows the sub-
sequent state of the conditional particle filter. The people
particle filters drawn in the figure correspond to the most
likely robot particle. Both people within range of the robot
were tracked successfully.

The accuracy of localization and people-tracking were
evaluated based on hand-labeled ground truth data cap-
tured from a second laser range finder. The standard devia-
tion of the positional error of the robot was approximately
6 cm, and the standard deviation of the positional error of
people was less than 5 cm. The mean positional errors of
the robot and the people were both less than 3 cm.

The accuracy of model selection was tested on a data set
approximately 6 minutes long. Over the course of the run,
31 people passed within the sensor range of the robot. At
any given time, up to four people were visible. Of those 31
people, only 3 were not tracked correctly. In one instance,
two people entered the robot’s field-of-view in close prox-
imity and walked very close to each other. In that situation,
both people were tracked incorrectly as a single person.

TABLE|
CONDITIONAL PARTICLE FILTER PERFORMANCE

Tracking Accuracy

Robot position - mean error | 2.5 cm
Robot position - std. error 5.7cm
People position - mean error | 1.5cm
People position - std. error 4.2cm

Model Selection Accuracy
True number of people (cumulative) | 31
Model selection errors 3
Model selection accuracy 90%

Model selection was also tested in a more difficult en-
vironment, in which the map was not up-to-date. In this
run, the robot encountered 11 different people, up to 5 at a
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Fig. 4. (a) Laser scan showing two people near the robot (b) Output of the particle fi Iter showing the estimated position of the robot and both people.
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Fig. 5. Evolution of the conditional particle fi Iter from global uncertainty to successful localization and tracking

time. All 11 people in this environment were tracked cor-
rectly. However, the algorithm also tracked an additional 4
objects. These tracks corresponded with inanimate objects
that were not in the map, including a recycling bin in the
hallway, a chair, and a closed door that was open when the
map was made. In addition to tracking all the people in the
incorrect map, the filter was also able to identify inconsis-
tencies between the map and the world. The implications
of this will be discussed in Section IV.

B. Global Uncertainty

Figure 4 and Table | illustrate the performance of the
conditional particle filter in situations where the position
of the robot is relatively well known. The real power of
this approach is demonstrated in situations where there is
significant uncertainty over robot pose. This commonly oc-
curs during global localization, when a robot is initialized
with no information about its position or orientation rela-
tive to a map. Figure 5 shows the results of the conditional

(b)
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particle filter during global localization with a single per-
son in the robot’s field-of-view. Figure 5(a) shows the state
of the particle filter just after initialization, with particles
scattered all over the map. After the robot moved a few
meters, two modes developed in the distributions of robot
and people particles. The two modes, shown in Figure 5(b),
correspond to the robot having started from two different
doorways in a relatively uniform hallway. Even though
there is major uncertainty in the location of the robot, the
person is tracked successfully. This is evidenced by the two
clusters of people positions moving ahead of the two clus-
ters of robot positions. As the robot moved further down
the hallway, sensor evidence eventually disambiguated be-
tween the primary hypotheses and converged on the true
state of the world, as shown in Figure 5(c).

C. Intelligent Following Behavior

A simple following behavior was implemented using the
results of the conditional particle filter. Independent con-



Fig. 6. The following behavior based on the people-tracker output con-
tinues to track a person even as that person is occluded repeatedly by
asecond individual.

trol loops governing the translational and rotational veloc-
ity of the robot were based on the relative distance and
bearing to the subject being followed. A shapshot of the
behavior in operation is shown in Figure 6. The robot was
instructed to follow one of two people within range of the
robot. A thick line is drawn between the mean robot po-
sition and the position of the person being followed. The
robot successfully followed this person down the hallway,
even as the second person repeatedly walked between the
subject and the robot. The robustness of the people-tracker
to occlusion enables a very simple control loop to follow
a person reliably, even in crowded environments. Movies
animating the performance of the following behavior and
the conditional particle filter in general are available on the
Web at http://www.cs.cmu.edu/"mmde.

1V. DISCUSSION

This paper presented the conditional particle filter, an
extension to traditional particle filters that breaks high di-
mensional particles into two sets of lower dimensional par-
ticles, one conditionally dependent upon the other. The
algorithm was demonstrated in the context of mobile robot
localization and people-tracking. The resulting particle fil-
ter was able to track people reliably, even in situations with
global uncertainty. The algorithm is robust to sensor noise,
occlusion, and uncertainty in localization, and the number
of samples necessary to implement the filter scales linearly
with the number of people in the world.

In addition to tracking people, map-based tracking ap-
proaches have the interesting side effect of identify incon-
sistencies between the map and the world. By observing
the positions and velocities of objects over longer periods

of time, map-based people-tracking can serve as the basis
for a life-long map learning algorithm. Sensor readings
that correspond with persistent, stationary, unmapped ob-
jects can be used to add these objects into the map. More
accurate maps, in turn, will lead to better people-tracking
and more accurate navigation.

People-tracking also provides the foundation for numer-
ous high-level robot behaviors. The positions and veloc-
ities of people can be used to plan sophisticated actions
like intercepting and avoiding people. Robots that use
people-tracking information as an input to collision avoid-
ance will be able to actively avoid future collisions, result-
ing in smoother motion and faster overall navigation.
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