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We present a probabilistic technique for alignment and subsequent change detection using
range sensor data. The alignment method is derived from a novel, non-rigid approach
to register point clouds induced by pose-related range observations that are particularly
erroneous. It allows for high scan estimation errors to be compensated distinctly, whilst
considering temporally successive measurements to be correlated. Based on the alignment,
changes between data sets are detected using a probabilistic approach that is capable of dif-
ferentiating between likely and unlikely changes. When applied to observations containing
even small differences, it reliably identifies intentionally introduced modifications.

1 Introduction

We provide a unified probabilistic technique for alignment and subsequent change detec-
tion using range sensor data. Our work has been motivated by the goal to identify even
small changes of the size of a little box by (airborne) vehicle observations. To allow for
an exhaustive application of our approach, a terrain shall be sensed as infrequently as
possible.

An autonomous Yamaha RMAX helicopter (see Fig. 1) that has been developed within
the scope of the NASA Autonomous Rotorcraft Project (ARP), serves as model and exper-
imental platform for our alignment and change detection approach. Tests were performed
at the Ames Disaster Assistance and Rescue Team (DART) Collapsed Structure Rescue
Training Site (see Fig. 2) located at NASA Ames Research Center in Mountain View,
California.

The vehicle’s pose is estimated by a Kalman filter integrating GPS position and veloc-
ity. The RMAX has been modified to include an avionics payload which, for our purpose,
contains a SICK PLS laser range scanning unit that is mounted under the helicopter’s
nose, pointing straight down at an angle of 90 degrees. The device provides centimeter-
accuracy range measurement every one degree over a field-of-view of 180 degrees and at
a frequency of 75 Hz. Details on ARP as well as the helicopter’s operational issues are to
be found in [14].
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Fig. 1. The NASA/ARP helicopter equipped Fig. 2. The DART Collapsed Structure Rescue
with a range measurement device from SICK.  Training Site located in Mountain View, CA.

2 Related Work

In the past, automatic change detection based on probabilistic techniques has widely been
studied in the field of computer vision and image processing. In [1] the history of change
detection from remotely sensed digital images is summarized comprehensively. A variety
of approaches addressing interesting purposes, like environmental monitoring [3], urban
[4], [5], [6] and forest surveillance [7], etc. have further been developed. These studies
exclusively base on optical and range imagery acquired by camera or aerial mapping
radar and lidar systems.

Recent major breakthroughs in the field of high-precision range sensor technologies
led to an increasing availability of inexpensive scanning devices. As a consequence thereof,
applying change detection methods to spatially interpreted range sensor data as presented
in [8] and [9] has become more and more attractive. However, compared to the major
efforts and breakthroughs in the imagery-related theories, these approaches have only
been studied to some unsatisfactory extent. Nevertheless, they promise to open up a wide
area of potentially superior applications.

In this paper, we are therefore deriving a novel unsupervised technique to evaluate
changes in spatial point clouds. Our method deeply relates to those based on the so-
called “difference image” as proposed in [1]. In principle, these methods analyze spatial
or spatio-temporal distributions of a distance metric between previously aligned reference
and sample imagery. But in spite of their relative simplicity and widespread use, they
usually exhibit a major weakness: As shown in [2], change detection accuracy strongly
correlates with precise registration results that again suffer from the prevailing neglection
of building sufficient models.

In contrast to related work that merely makes insufficient effort to precisely register
data sets by only few rigid transformations, the theory presented in this paper focuses
on enhancing alignment results significantly. This goal is achieved by applying a novel
algorithm based on the non-rigid registration approach as presented in [13]. We there-
fore explicitly derive and consider models of the measuring processes involved in data
acquisition.

3 Models

3.1 Helicopter Model

Whenever a range scan is acquired, the helicopter is at a specific pose relative to a global
GPS coordinate system. Let us denote the pose by two sets of variables, pertaining to the
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z-y-z coordinates of the vehicle and its three Euler angles. Specifically, we assume that at
time ¢, for t = 1,..., N, the helicopter’s location is given by the variables z;, y;, and z;.
We denote the angles at time ¢ by ¢, 6; and ;. Thus, the state vector of the helicopter
at time t is given by & = (xt Yt 2t Ot O Uy )T.

An estimate of the helicopter’s pose is provided by the onboard Kalman filter. Specif-
ically, at time ¢ we receive from the EKF a Gaussian pose estimate. The mean of an esti-
mate will be denoted ¢ and the covariance X;. The sequence of all poses acquired during
a single flight of the helicopter is represented by a high-dimensional Gaussian trajectory
estimate £ with mean p and covariance Y. Stated differently, we have € ~ N (u, X). This
implies that the corresponding negative logarithm of the pose trajectory distribution is
given by

1 T o
—logpr (§) = const. + 5 (§—p) X7 (E-p) (1)
The constant term in Eq. 1 is the logarithm of the normalizer |27 X \7%. However, this
normalizer does not depend on the target variable £&. Henceforth, its actual value will play
no important role, and it can safely be omitted.

3.2 Measurement Model

The helicopter acquires ground data using a range scanner. Each scan consists of M = 180
range measurements. The i-th measurement is oriented at angle «;. Let the actual range
measurement be denoted r;;, where ¢ is once again the time index, and ¢ is the index of
the measurement beam acquiring the range scan at time t.

Basic geometry suggests that the projection of this measurement into spatial coordi-
nates is now obtained by

Pe,i (&,7ti) = Rgo,9. Ri (00 Tt,i)T + (¢ ye Zt)T (2)

Here Ry,0,y, is the joint rotation matrix that maps the orientation of the helicopter’s
local coordinate system back into global world coordinates. The vector (x¢,y:, 2¢) rep-
resents the helicopter’s location in 3-D world coordinates. Finally, the matrix R; is a
rotation matrix that captures the angle a; of the i-th measurement beam.

In practice, even in static environments each measurement will be corrupted by noise.
To model the noise, we assume the existence of a “true” surface point, denoted py ;. Of
course, Pg,; is unknown. However, this surface point induces a true range, denoted 7 ;,
which is unknown as well, but it will play an important role in determining whether two
scans refer to the same static surface patch in the differencing process. Again, we assume
the noise probability distribution elongating along the measurement beam to be Gaussian
with mean 7;; and variance s. Thus, we define r;; ~ N (714,8). The corresponding
negative logarithm shall then be given by

1
—log pr (r,;) = const. + 3 (re; — i) st (ree — i) (3)

Once again, the constant term in Eq. 3 is the logarithm of the normalizer |27rs|_% and
can be omitted. We remark that the assumed measurement error s plays a critical role in
change detection. It characterizes the normal variation we are expecting when measuring
the ground surface.

From Eq. 2 we learn that the distribution over probable surface points p¢ ; depends
on the time-related pose estimation & and the measurement model for 7, ;. Both models
are represented by Gaussians and we therefore infer that the pg; are also distributed
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normally. Hence, we define the joint probability pe; ~ N (D,i, Qi) and the negative
logarithm

1 L \T - .
—logpr (ps,i) = const. + By (Pt,i — Pti) Qi (Peyi — De.i) (4)

Here, the mean p¢,; is once again the “true” surface point we have sensed, and the
covariance () ; incorporates the helicopter model as stated in Sec. 3.1 along with the
projection of our measurement model from Sec. 3.2 into spatial coordinates. The constant
part is omitted as usual.

3.3 Practical Considerations

In change detection, the same ground is purposely sensed more than once. To distinguish
variable values arising from two independent scanning runs, we introduce a special nota-
tion remarking that estimations occurred at different times. Therefore, poses, measure-
ments and induced surface points originating from an earlier run will further be referred
to as &, Iy i and py i respectively. Observations acquired during a subsequent pass
will remain denoted &, r¢,; and p¢,;. The noise models will be modified analogously.

4 Scan Alignment

In this section, we are deriving a probabilistic model for the alignment process. Based on
that, we will show why classical approaches addressing the problem of registering range
scan data that originates from measurements carried out by a helicopter must perform
poorly. Hence, we will introduce a novel and superior method that is much more capable
of aligning maps of the discussed type.

4.1 Alignment Model

Based on the assumptions made in Sec. 3, we can now formally consider alignment as
the problem of maximizing the posterior over locations of points p = {ps,i} in the world,
although they might have been induced by different sensor readings acquired in different
runs. Put differently, we seek to find

argmax pr (p) (5)
&r
where £ denotes the helicopter’s trajectory estimate, whilst r = {r; ;} refers to all the
measurements acquired during the entire duration of the observation flight.
As common, our approach minimizes the negative likelihood. From Eq. 5, we can
therefore derive under independent sensor noise:

argmaxpr (p) = argmin—logpr (p) = argmin — log Hpr (Pt,i) (6)
g &r & t,i
This expression may then be converted into a simple non-linear least squares problem
by applying the negative logarithm stated in Eq. 4. The optimization then resolves to

. 1 ) _ )
argrmin > 5 (Pei—Pei)’ Q) (Pei— Pe) + const. (7)
o tyi

2
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A basic assumption our approach does not make is the existence of an explicit model
of the environment. This is an important factor, because we are aiming at being able to
detect changes by sensing parts of the world not more than twice. Hence, it seems nearly
impossible to incorporate enough knowledge to actually learn an adequate probabilistic
representation for it. We therefore have to refer to measurements originating from a
previous observation run as the reference. Put differently, we define

Pt,i = m (Pt,i) (8)

Here, the function m (ps,;) — P ,iv denotes a matching of points acquired at time ¢

and angle a; with corresponding surface points of the reference, that is points induced by

sensor readings of an earlier pass. Hence, the posterior’s optimization from Eq. 7 can be
restated

al‘%min > [pei — m (pes)]” Qs [Pei — m (Pes)] (9)
Tt

where constant parts and factors that apply to the whole term have been omitted.
This is safe, because they do not depend on the target variables and thus, they will play
no role in the overall optimization.

One might have noticed that we have not yet derived the joint covariance matrix Q; ;
that appears in our distribution over probable surface points. From Eq. 2 we learn that
inferring the elements of Q);; involves several rotational and translational transformations
to be applied to the distributions introduced by our helicopter and our measurement
model. However, for the purpose of simplicity, the correct form of @);; will play no role
in the overall alignment. Its determination is therefore dispensable.

4.2 Aligning Rigid Models
Iterative Closest Point Algorithm

Besl and McKay suggest in [10] to solve the alignment problem by using a special iteration
scheme. They prove that, with respect to a given metric, an optimal matching between a
reference and a sample point cloud can be achieved by repeatedly optimizing the registra-
tion parameters Rapaoay and At such that they minimize the distance metric between
the sample and the best matching parts of the reference at a time. Here, Raga0ay, OF
written briefly AR, denotes a joint transformation matrix that rotates all sample points
about the three spatial axes, whilst At = (Az Ay Az)T performs a translation. Put
formally, ICP therefore seeks to find

aAr%Hi\i?Z[AR Pei + At —m (pes)]” Q; ) [AR pei + At — m ()] (10)

At

Here, the desired metric that matches correspondent points of the clouds is the Maha-
lanobis distance. However, the classical ICP approach only allows for metrics that assume
the constant isotropic and time-invariant case of our posterior. Put differently Q:; = ¢ I3,
where I3 is the 3 x 3 identity matrix. With respect to the overall minimization, @ ; is
now constant and can be omitted. The optimization therefore reduces to

argminZ[AR Pt,i + At — m (pes)]? (11)
AR At 5

Still, the problem is a non-linear least squares problem, because the rotation is a
non-linear function of the angles involved.

The ICP algorithm itself is stated in [10] and its convergence is proven. We therefore
waive a complete notation of the iteration scheme. The reader should note that AR and
At both incorporate global transformation parameters that align reference and sample
as a whole. Thus, both point clouds are considered to be rigid.
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Fig. 3. Registration results obtained by considering reference (light blue) and sample (black) to
be rigid. The side view reveals, that there remain huge divergences (red boxes) between numerous
parts of the two point clouds.

Linear Optimization Approach

Commonly, it is convenient to linearize the optimization criterion. For that purpose, we
simply expect aligning rotations at each step of ICP to be small and approximate cos
by 1 and sina by a. In our case, this is a reasonable assumption, because we seek to
register point clouds that are pre-aligned to some extent. Accordingly, RasA0 denotes

1 —AY A
Ragrony = AR =~ AXG A1¢ —f¢ (12)

Now that the optimization problem is linear, it can easily be solved exactly (relatively
to the approximations). For this purpose, the partial derivatives of Eq. 11 with respect
to the dependents Az, Ay, Az, A¢p, A and At are set to zero, yielding 6 equations
containing the 6 sought variables. This gives us a matrix equation of the form A x = —b,
where A is a 6 x 6 matrix collecting the gradients of the optimization criterion, b is
a 6-dimensional vector incorporating the constant components of the derivatives and
x = (Az Ay Az Ap A9 Ap)”.

Here, the exact determination of A and b be omitted, because this solely involves
basic maths. However, we shall remark the important fact that A is symmetric and pos-
itive definite. This is an important property a variety of particularly efficient numerical
algorithms take advantage of. For example, A x = —b may be solved using the Cholesky
Decomposition.

Preliminary Results

Fig. 3 shows two point clouds, one being the reference py i, the other being the sample
Pt,i- Both have been registered using rigid body transformations as suggested by Besl
and McKay. The scans inducing the point clouds were acquired independently during two
flights of our laser-equipped helicopter. The classical approach obviously performs poorly
in that there remain huge divergences between numerous parts of the two data sets.

To gain more insight into the apparent lacks that occur when applying standard ICP
to helicopter range observations, we need to investigate the reasons for its failing. By
looking at Fig. 3, we find that the errors in our observations are nearly uncorrelated.
This implies that the variances and covariances of the pose estimation and the measure-
ment distribution are significant. The attempt to apply rigid body transformations to our
sample is obviously not capable of compensating for this kind of errors.
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5 Aligning Non-Rigid Models

In Sec. 4.2 we have shown that assuming an alignment model consisting of several in-
dividual scans to be rigid leads to results that implicitly induce a vast amount of false
differences. Therefore, we now present a novel approach that is capable of dealing with
high, randomly distributed estimation errors ICP does not consider.

The key idea is to extent the classical alignment approach by treating the sample
we wish to align to a reference model as a non-rigid point cloud. More specifically, each
scan is considered as rigid body, whilst it remains subject to local transformations as a
whole. Based on that, we are then able to involve dependency assumptions that account
for correlations between observation errors.

Extended Optimization Criterion

In a first step we simply allow for scans to be transformed independently instead of
assuming a global AR and a global At. For that purpose, we introduce a rotation matrix

AR; = Rag, A0, A4, and a translation vector Aty = (Axt Ay Az )T. Both are applying
to all pg,; that were induced by readings acquired at time ¢t. We now modify the simplified
posterior from Eq. 11 to incorporate the scan-related transformation parameters and
henceforth seek to find

argmin Z[ARt Pei+ Aty —m (pes)]? (13)
AR, Aty

At first glance, this only seems to be a slight modification, but Eq. 13 essentially
differs from Eq. 11 in that we now use a vast sequence of scan-related, local rotation
matrices AR; and translation vectors Aty instead of a single scan-common, global AR
and a global At to align reference and sample.

Nevertheless, this gives us a linear optimization problem we are able to solve exactly.
Setting the partial derivatives with respect to the dependents Ax;, Ay, Azy, Ady, Ab;
and Ay for all t to zero, we yield 6N equations with 6 N unknown variables. That
is, the dimensionality of our optimization problem grew by the factor N. However, we
collect the elements to a linear matrix equation of the form A* x* = —b*, where A* is
once again the matrix containing all the gradients of our optimization criterion and now
incorporates 6N X 6N elements. As usual, the 6 N-dimensional vector b* accumulates the
constant components of the derivatives and x* represents all 6N sought transformation
parameters.

A closer look to the matrix equation reveals that A* remains symmetric and positive
definite. Although its dimensionality increased tremendously, non-zero elements can solely
be found along the main diagonal. The reason for that is covered in our model assumption.
In particular, we considered all pose estimations and measurements to be independent
in terms of noise. The missing gradients to the left and the right of the main diagonal
therefore account for missing dependencies in the posterior. Hence, A* is said to be sparse
and the stated problem is usually referred to as a sparse energy minimization problem, for
which a rich family of efficient solvers exist. Amongst them, the conjugate gradient (CG)
algorithm is the most prominent iterative method. Descriptions of CG can be found in
contemporary textbooks on optimization [15]. The details of the algorithm are omitted
for brevity.

Plausible Dependency Assumptions

The alignment approach stated so far is based on a non-rigid model that assembles rigid
scan lines in a non-specific way. Estimation noise is assumed to be independent and conse-
quently, scans are considered as incoherent. However, this is a very weak assumption that
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may lead to unexpected registration results. The Kalman filter estimating the helicopter’s
pose at each step t, for example, emits sequences of state vectors & that are known to be
statistically dependent over time.

To account for correlated observation errors of this type, we therefore assume non-zero
covariances between temporally successive observations. Put differently, the idea may be
compared to attaching optimization constraints in the form of little springs between scans
arising from time ¢t and time ¢t — 1. We modify the posterior from Eq. 13 accordingly to
take advantage of a translational covariance parameter Ag; and a rotational covariance
Aq,. Henceforth, we seek to find

argmin Z[ARt Pt + Aty — m (pe,i)]”

ARy Aty T

1 1

— ) [Aty —tar—1]? Ary — Arg_4]? 14
+ Aqtzt:[ t At—1] +Aqr zt:[ Iy re—1) (14)

Here, we introduced another vector Ary = (Agbt A0 Ay )T that simply accumulates
the corresponding Euler angles from our rotation matrix AR; = ARA4, A0, Ay, -

To exactly solve the linear optimization problem stated in Eq. 14, we are once again
setting the partial derivatives with respect to the dependents Axy, Ay, Az, Apy, Ay and
Ay for all t to zero. Furthermore, we collect the gradients and constants to yield a linear
matrix equation of the familiar form and structure. Again, the gradient matrix remains
sparse as well as symmetric and positive definite. Hence, applying the CG algorithm to
solve the system of linear equations remains a feasible approach.

Online Approach

The approach presented so far constructs a global optimization problem that incorporates
knowledge on the complete data sets. However, a lot of applications exist where an online
algorithm is a much more favorable solution. We are therefore briefly presenting a slightly
modified, iterative approach that incorporates range scans as they occur.

The key idea of our alternative, real-time computable alignment method, which can
directly be derived from Eq. 14, additionally considers a translational variance parameter
s¢ as well as a rotational variance s,.. Thus, the online posterior optimization shall be
denoted

argmin Z[ARt Pt,i + Aty — m (pe,i)]? (15)
ARy, Aty
+ LAt~ tae ) [Ar, - A2+ AL+ —Ar?

Aq t At—1 Aq, t t—1 5t t s, t

and has to be determined for every arising observation at time t.

5.1 Alignment Results

Alignment results are depicted in Fig. 4. Compared to the preliminary results shown
in Fig. 3 that were obtained by applying classical ICP, our approach provides a near-
perfect registration of reference and sample, even though the helicopter’s pose estimation
is exceptionally imprecise and noisy.

In order to yield a quantitative evaluation of our alignment results, we assume a
normal distribution of all difference vectors between registered sample points and corre-
sponding, that is nearest, reference points. This approach allows for the mean and the
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Fig. 4. Registration results obtained by applying the non-rigid approach presented in this paper.
Reference (light blue) and sample (black) are aligned near-perfectly.

Alignment /Error Mean Std. Deviation

None (0.017 0.032 —0.063) (0.117 0.129 0.212)
Rigid (0.001 0.000 0.002)  (0.094 0.090 0.153 )
Non-Rigid, Offline (0.002 0.002 0.004) (10.058 0.054 0.061 )

Non-Rigid, Online (0.002 0.003 0.000) (10.053 0.052 0.058)

Table 1. Alignment errors (in meters) obtained by applying the classical registration as well
as the approaches presented. Significantly smaller standard deviations of the error distributions
achieved by applying the non-rigid methods clearly indicate better alignment results.

standard deviation of the Gaussian alignment error for each of the spatial dimensions to
be determined empirically.

Table 1 presents the alignment errors achieved by applying the classical, rigid method
as well as the non-rigid offline and the non-rigid online approach proposed in this paper to
the helicopter’s observations. Obviously, all methods perform fairly well in that they are
capable of shifting the distributions’ means into the origin. However, the rigid registration
does not compensate for the error’s variant components, whilst both non-rigid approaches
significantly narrow the Gaussians, thus clearly indicating better alignment results.

6 Change Detection

This section of the paper deals with the question of how to actually identify relevant
changes in the previously aligned models. It will become apparent that in order to reliably
detect changes in naturally erroneous and noisy sensor data, several assumptions are to be
made. Therefore a probabilistic approach with the capability of considerably improving
the detection results is presented.

6.1 Change Model

The critical question in change detection is whether a surface in the real world has
changed. In our context, a change is manifested by the fact that two “true” measure-
ments differ, that is the environment has been altered between two consecutive scans.
The probability for this to happen shall be given by the expression

pr(Pe,i # Du,iv) (16)
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We introduce a joint probability distribution giving an estimate of changes in the
environment. Therefore, we are considering two distinct cases.

Case 1: The world has not changed. Consider the range scan r; ; and its induced point
pt,; along with the acquisition pose &;. Furthermore, let ¢ 3+ be the nearest neighbor to
Pt.i, and 7w i the associated range sensed relative to the same pose. Then our approach
gives us pr(r; | Py i, . false) ~ N (7 7, 2s). The variance of 2s accounts for the two
measurement noise variables involved in this process, one from each of the scans. We
assume independence in measurement noise, hence the variances of both noise variables
are simply added.

Case 2: The world has changed. Since we make no assumptions as to how the world
changes, the best we can assume is a uniform distribution over scan lengths. Thus, we
define pr (r¢; | Pe,i7, &, true) ~ U (0, Tmax), With U denoting the desired uniform distri-
bution.

These two probabilities enable us to arrive at a probabilistic expression to estimate
when the world changed. In particular, Bayes rule suggests:

pr (true | v, Perirs Et) (17)
B pr (e | Py i, &, true) - p (true)
pr(re; | Per v, &b, true) - p (true) + pr(re; | Per,iv, &, false) - p (false)
Here p(true) is the prior probability of a change, and p (false) = 1 — p(true) the
probability that the world remains static at any given location.
The logarithm of this expression can be approximated using Jensen’s inequality:

log pr (true | 74, Per,iv, &t)

= log[pr (r¢,; | Pe,iv, &, true) - p (true)] — log[pr (re; | Py, iv, €, true) - p (true)]
—log[pr (1t | Pe,iv, &, false) - p (false)]

= —log[pr (1 | Pw,iv, &, false) - p (false)]

1 _
= —logp (false) + log Vdrms + 3 (rei — 7o) (28)7" (rei — Forir)

1 -
= const. + o (rei — ) (28) (e = Tu ) (18)

Therefore, we are now able to determine how probable a likely change is. We compute
a simple quadratic distance of the type

di = (rei — Forir)’ (28)7" (rei — Forr) (19)
Assuming that a change with a probability pr (true | 74, Pe’,i, &) > 0.5 may be sig-
nificant, the distance d; ; has to be compared to the following threshold

?
di; > 2logpr (true | ry 4, Per,iv, &) — 2 const.

= 21og 0.5 + 2log p (false) — 2log V4rs (20)

If the comparison evaluates to “true”, a probable change can be marked as detected.

6.2 Change Detection Results

The change detection results shown in Figs. 5, 7 and 6 were all obtained by preliminarily
registering reference and sample according to our alignment approach. A small cubical box
with a maximum edge length of about 20 cm has been placed within the area examined
by the helicopter.
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=5

Fig. 5. Change detection results obtained by Fig. 6. The intentionally introduced change (a
evaluating the Euclidean distance between ref- small box with an edge length of about 20 cm)
erence and sample. Changes (red) are com- has been detected correctly by our approach.
monly occurring in scattered areas.

Fig. 7. By applying the probabilistic threshold analysis presented in our approach, all unlikely
changes could successfully be extracted from the results. The “true” change is marked.

Fig. 5 illustrates that solely evaluating the Euclidean distances between both point
clouds explicitly fails in scattered areas of the environment. The superiority of our prob-
abilistic change detection approach is visualized in Fig. 7, where no false changes were
marked within these parts. In Fig. 6 a closer look to our intentionally introduced change
reveals that is has been detected correctly after all.

7 Discussion and Future Work

We presented a probabilistic approach for alignment and change detection using range
sensor data. The alignment method provides a non-rigid point cloud registration that
near-perfectly deals with high estimation errors. Changes between data sets are detected
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using a probabilistic threshold that is capable of differentiating between likely and un-
likely changes. Even small intentional modifications are detected reliably, whilst errors
are excluded.

There is ample opportunity for future research. On the basis of a reliable change
detection, changes could be classified. That would allow for a variety of applications in
robotics to superiorly deal with dynamic environments. Another opportunity pertains to
the learning component of our work: In addition to learning alignment models, it should
be possible to learn the actual noise models of the sensors and the pose estimation system.
We also suspect that further improvements can be achieved by better involving the exact
physical noise characteristics of a sensor.
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