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Abstract. Learning spatial models from sensor data often raises a challenging data association
problem of relating parameters in the model to individual measurements. This paper proposes
an algorithm based on EM, which simultaneously solves the model learning and the data
association problem. The algorithm is developed in the context of the the structure from
motion problem, which is the problem of learning a 3D scene model from a collection of
image data. To accommodate the spatial constraints in this domain, we introduce the notion of
virtual measurementsas sufficient statistics to be used in the M-step, and develop an efficient
Markov chain Monte Carlo sampling method calledchain flipping, to calculate these statistics
in the E-step. Experimental results show that we can solve hard data association problems
when learning models of 3D scenes, and that we can do so efficiently. We conjecture that this
approach can be applied to a broad range of model learning problems from sensor data, such
as the robot mapping problem.
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1. Introduction

This paper addresses the problem of data association when learning models
from data. Thedata association problem, also known as thecorrespondence
problem, is the problem of relating sensor measurements to parameters in the
model that is being learned. This problem arises in a range of disciplines. In
clustering, it is the problem of determining which data point belongs to which
cluster (Duda & Hart, 1973; Rumelhart & Zipser, 1986; Buhmann, 1995). In
mobile robotics, learning a map of the environment creates the problem of
determining the correspondence between individual measurements (e.g., the
robot sees a door), and the corresponding features in the world (e.g., door
number 17) (Leonard & Durrant-Whyte, 1992; Leonard et al., 1992; Shatkay,
1998; Thrun et al., 1998a). A similar problem can be found in computer
vision, where it is known asstructure from motion(SFM). SFM seeks to
learn a 3D model from a collection of images, which raises the problem of
determining the correspondence between features in the physical world and
measurements in image space. In all of these problems, learning a model re-
quires a robust solution to the data association problem which, in the general
case, is hard to obtain. Because the problem is hard, many existing algo-
rithms make highly restrictive assumptions, such as the availability of unique
landmarks in robotics (Borenstein et al., 1996; Chown et al., 1995), or the ex-
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istence of a reliable feature tracking mechanisms in computer vision (Tomasi
& Kanade, 1992; Hartley, 1994).

From a statistical point of view, the data association can be phrased as
an incomplete data problem (Ghahramani & Jordan, 1994; Tanner, 1993),
for which a range of methods exists. One popular approach isexpectation
maximization(EM) (Dempster et al., 1977), which has been applied with
great success to clustering problems and a range of other estimation problems
with incomplete data (Ghahramani & Roweis, 1998; McLachlan & Krishnan,
1997). The EM algorithm iterates two estimation steps, called expectation
(E-step) and maximization (M-step). The E-step estimates a distribution over
the incomplete data using a fixed model. The M-step then calculates the max-
imum likelihood model for the distributions computed in the E-step. It has
been shown that EM performs hill-climbing in likelihood space, and iterating
both steps leads to a model that locally maximizes the likelihood (Dempster
et al., 1977; Neal & Hinton, 1998).

Applying EM to learning spatial models isnotstraightforward, as each do-
main comes with a set of constraints that are often difficult to incorporate. An
example is the work on learning a map of the environment for mobile robots,
by Shatkay and Kaelbling (Shatkay & Kaelbling, 1997; Shatkay, 1998), and
also by Thrun, Burgard, and Fox (Burgard et al., 1999; Thrun et al., 1998b,
1998a). Both teams have proposed extensions of EM that take into account
the geometric constraints of robot environments, and the resulting mapping
algorithms have shown to scale up to large environments.

This paper proposes an algorithm that applies EM to a different domain:
the structure from motion problem in computer vision. As is commonly the
case in SFM, the model that is being learned is the location of all features in
3D, along with the cameras positions in 6D. In this paper, we make the com-
monly made assumption that all 3D features are seen in all images (Tomasi
& Kanade, 1992; Hartley, 1994; McLauchlan & Murray, 1995). However,
the method we propose does not depend crucially on this assumption, and
we will discuss at the end of this paper how to extend it to more general
imaging situations with occlusions and spurious measurements. More impor-
tantly, we do not assume any prior knowledge on the camera positions or on
the correspondence between image measurements and 3D features the feature
identities, giving rise to a hard data association problem.

The vast majority of literature on SFM considers special situations where
the data association problem can be solved trivially. Some approaches simply
assume that data correspondence is knowna priori (Ullman, 1979; Longuet-
Higgins, 1981; Tsai & Huang, 1984; Hartley, 1994; McLauchlan & Murray,
1995; Morris & Kanade, 1998). Other approaches only consider situations
where images are recorded in a sequence, so that features can be tracked
from frame to frame (Broida & Chellappa, 1991; Tomasi & Kanade, 1992;
Szeliski & Kang, 1993; Azarbayejani & Pentland, 1995; Poelman & Kanade,
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1997). Methods based on the robust recovery of epipolar geometry (Beardsley
et al., 1996; Torr et al., 1998) can cope with larger inter-frame displacements,
but still depend on the ability to identify a set of initial correspondences to
seed the robust matching process. In the most general case, however, images
are taken from widely separated viewpoints. This problem has largely been
ignored in the SFM literature, due to the difficulty of interleaving model
learning and data association. It has been referred to as the most difficult part
of structure recovery (Torr et al., 1998), and it is also the problem addressed
in this paper. The reader should notice that it is particularly challenging in
3D. Traditional approaches for establishing correspondence between sets of
2D features (Scott & Longuet-Higgins, 1991; Shapiro & Brady, 1992; Gold
et al., 1998) are of limited use in this domain, as the projected 3D structure
can look very different in each image.

From a statistical estimation point of view, the SFM problem comes with
a unique set of properties, which make the application of EM non-trivial:

1. Geometric consistency.The laws of optical projection constrain the space
of valid estimates (models, data associations) in a non-trivial way.

2. Mutual exclusiveness.Each feature in the real world occursat most once
in each individual camera image—this is an important assumption that
severely constrains the data association.

3. Large parameter spaces.The number of features in computer vision do-
mains is usually large, giving raise to a huge number of local minima in
the space of data associations.

This paper develops an algorithm based on EM that addresses these chal-
lenges. The correspondence (data association) is encoded by anassignment
vectorthat assigns individual measurements to specific features in the model.
The basic steps of EM are modified to suit the specifics of SFM:

The E-stepcalculates a posterior over the space of all possible assign-
ments. Unfortunately, the constraints listed above make it impossible to cal-
culate the posterior in closed form. The standard approach for posterior es-
timation in such situations is Monte Carlo Markov Chain (MCMC) (Doucet
et al., 2000; Gilks et al., 1996; Neal, 1993). In particular, our approach uses
the popular Metropolis-Hastingsalgorithm (Hastings, 1970; Metropolis et al.,
1953; Smith & Gelfand, 1992), for approximating the desired posterior sum-
maries. However, Metropolis-Hastings can be extremely inefficient in large
spaces (Gilks et al., 1996). To remedy this problem, we propose a new pro-
posal distribution based onchain flipping, which is specifically suited for data
association problems. Chain flipping is a method that can quickly jump across
globally different assignments. Experimental results show that this approach
is orders of magnitude more efficient than commonly used approaches that
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consider only local changes in the MCMC sampling process (e.g., Gibbs
sampling (Geman & Geman, 1984; Smith & Gelfand, 1992)).

The M-stepcalculates the location of the features in the scene, along with
the camera positions.As pointed out, the SFM literature has developed a num-
ber of excellent algorithms for solving this problem under the assumption that
the data association problem is solved. However, the E-step generates only
probabilistic data associations. To bridge this gap, we introduce the notion
of virtual measurements. Virtual measurements are generated in the E-step,
and have two pleasing properties: first, they make it possible to apply off-
the-shelf SFM algorithms for learning the model and the camera positions,
and second, they aresufficient statisticsof the posterior with respect to the
problem of learning the model; hence the M-step is mathematically sound.

From a machine learning point of view, our approach extends EM to an
important domain with a set of characteristics for which we previously lacked
a sound statistical estimator. From a SFM point of view, our approach adds
a method for data association that is statistically sound. In fact, our approach
is orthogonal to the vast majority of work in the SFM field in that is can be
combined with virtually any optimization algorithm that assumes known data
association. Thus, our approach adds the benefit of solving the data associ-
ation problem for a large body of literature that previously operated under
more narrow assumptions.

The remainder of this paper is structured as follows: in the next section,
Section 2, we introduce the structure from motion problem, the assumptions
we make, and show how EM can be used to solve the associated data associ-
ation problem. In Section 3 we introduce the notion of virtual measurements,
whereas Section 4 discusses how they can be computed using MCMC meth-
ods. Sections 5 and 6 provide an overview of the main algorithm, and present
results for several non-trivial computer vision datasets with challenging data
association problems. In Section 7 we then present the “chain flipping” pro-
posal distribution, which makes the E-step computationally efficient. This is
illustrated with additional results on the convergence speed of the different
sampling methods in Section 8.

2. EM for Structure from Motion without Correspondence

In this section we introduce the structure from motion problem and the as-
sumptions we make, and discuss existing SFM methods to solve the associ-
ated maximum-likelihoodproblem for known correspondence. For the case of
unknowncorrespondence, we show how the expectation-maximization (EM)
algorithm can be used to learn the model parameters, even if we do not know
which measurements correspond to which scene elements.
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Figure 1. An example with 4 features seen in 2 images. The 7 measurementsuik are assigned
to the individual featuresxj by means of the assignment variablesjik.

2.1. PROBLEM STATEMENT, NOTATION, AND ASSUMPTIONS

The structure from motion(SFM) problem is this: given a set of images of
a scene, taken from different viewpoints, learn a model of the 3D scene and
recover the camera poses. Several flavors of this problem exist, depending on
(a) whether the algorithm works with the pixel values of the images them-
selves, or whether a set of image features are first extracted, (b) whether
the images were taken in a continuous sequence or from arbitrary separate
locations, or (c) whether the camera’s intrinsic parameters are varying or not.

In this paper we make the following assumptions:

1. As most other approaches to SFM (Tomasi & Kanade, 1992; Szeliski
& Kang, 1993; Hartley, 1994; McLauchlan & Murray, 1995; Poelman
& Kanade, 1997; Morris & Kanade, 1998), we adopt a feature-based
approach, i.e. we assume that the input to the algorithm is a set of discrete
image measurementsU = fuik ; k 2 1::Kig, whereKi is the number of
measurements in imagei, and the image indexi ranges from1 to m. It
is assumed that these measurementsuik correspond to the projection of
a set of real world,3D featuresX = fxj jj 2 1::ng. In any real imaging
situation there is some uncertainty in the measurement, and so we model
the measurement process as one of projection followed by additive noise.

2. In contrast to the feature-based methods shortcited above, it isnot re-
quired that the correspondence between the measurements in the different
images is known. This is exactly the data association problem we solve
using EM. To model the correspondence between measurementsuik and
3D featurexj we introduce anassignment vectorJ: for each measure-
mentuik the vectorJ contains an indicator variablejik, indicating that
uik is a measurement assigned to thejik-th featurexjik . Note that this
additional data is unknown, i.e. it is hidden data.
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3. We also allow images to be taken from a set of arbitrarycamera poses
M = fmiji 2 1::mg. This makes the data association harder: most
existing approaches rely on the temporal continuity of an image stream
to trackfeatures over time (Deriche & Faugeras, 1990; Tomasi & Kanade,
1992; Zhang & Faugeras, 1992; Cox, 1993; Cox & Hingorani, 1994), or
otherwise constrain the data association problem (Beardsley et al., 1996).

4. In this paper, we adopt the commonly used assumption that all features
xj are seen in all images (Tomasi & Kanade, 1992; Hartley, 1994), i.e.
there are no spurious measurements and there is no occlusion. This is a
strong assumption: we discuss at the end of this paper how to extend our
method to more general imaging situations. Note that this implies that
there are exactlyn measurements in each image, i.e.Ki = n for all i.

The various variables introduced above are illustrated in Figure 1.

2.2. SFMWITH KNOWN CORRESPONDENCE

In the case that the assignment vectorJ is known, i.e. the data association is
solved, most existing approaches to SFM can be viewed asmaximum likeli-
hood(ML) methods, i.e. they attempt to find those model parameters� that
are most likely to have generated the data. In our case we have

1. The model parameters� consist of the 3D feature locationsX and the
camera posesM, i.e.� = (X;M), thestructureand themotion.

2. The data consists of the image measurementsU, and the assignment
vectorJ that assigns measurementsuik to 3D featuresxjik .

Themaximum likelihood estimate�� given the dataU andJ is given by

�� = argmax
�

logL(�;U;J) (1)

where the likelihoodL(�;U;J) is proportional toP (U;Jj�), the condi-
tional density of the data given the model. To evaluate the likelihood, we
need to assume a generative model. In particular, we assume that each mea-
surementuik is generated by applying themeasurement functionh to the
model, after which it is corrupted by additive noisen:

uik = h(mi;xjik) + n

The above expression also makes explicit that a given measurementuik de-
pends only on the camera parametersmi for the image in which it was
observed, and on the 3D featurexjik to which it is assigned.
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Without loss of generality, let us consider the case in which the features
xj are 3D points and the measurementsuik are points in the 2D image. In
this case the measurement function can be written as a 3D rigid displacement
followed by a projection:

h(mi;xj) = �i[Ri(xj � ti)] (2)

whereRi andti are the rotation matrix and translation of thei-th camera,
respectively, and�i : R3 ! R

2 is a projection operator which projects a
3D point to the 2D image plane. Various camera models can be defined by
specifying the action of this projection operator on a pointx = (x; y; z)T

(Morris et al., 1999). For example, the projection operators for orthography
and calibrated perspective are defined as:

�o
i [x] =

�
x

y

�
; �p

i [x] =

�
x=z

y=z

�

Finally, we need to assume (or learn) a distribution for the noisen. In
the case that the noisen on the measurements is i.i.d. zero-mean Gaussian
noise with standard deviation�, the negative log-likelihood is simply a sum
of squared re-projection errors:

logL(�;U;J) = �
1

2�2

mX
i=1

nX
k=1

kuik � h(mi;xjik)k
2 (3)

2.3. EXISTING METHODS FORSTRUCTURE FROMMOTION

The structure from motion problem has been studied extensively in the com-
puter vision literature over the past decade. The earliest work focused on
reconstruction from two images only (Ullman, 1979; Longuet-Higgins, 1981;
Tsai & Huang, 1984). Later new methods were developed to handle multiple
images, and they can all viewed as minimizing an objective function such as
(3), under a variety of different assumptions:

In the case of orthographic projection, i.e. the projection is orthogonal to
the image plane and has its focus at infinity, the estimate�� for the model
parameters that minimize (3) can be found efficiently using using afactor-
ization approach (Tomasi & Kanade, 1992). Using this technique, singular
value decomposition (SVD) is first applied to the dataU in order to obtain
affinestructureXa and motionMa, so called because they are only defined
up to a 3D affine transformation. To do this, the assignment informationJ is
needed to re-arrange the dataU in the correct order needed for SVD. To get
true Euclidean structure and motion, an additional step is needed that imposes
metric constraints onMa. The factorization method has the advantages that
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it is fast and does not need a good initial estimate of structure and motion
to converge. It has been applied to more complex camera models, i.e. weak-
and para-perspective models (Poelman & Kanade, 1997), and even to fully
perspective cameras (Triggs, 1996). These are well developed techniques, and
the reader is referred to (Tomasi & Kanade, 1992; Poelman & Kanade, 1997;
Morris & Kanade, 1998) for details and additional references.

In the case of full perspective cameras the measurement functionh(mi;xj)
is non-linear, as the projection involves a division by the depth of a feature
point relative to the camera. In this case one needs to resort to non-linear
optimization to minimize the re-projection error (3). This procedure is known
in photogrammetry and computer vision asbundle adjustment(Spetsakis &
Aloimonos, 1991; Szeliski & Kang, 1993; Weng et al., 1993; Hartley, 1994;
Cooper & Robson, 1996). A method that works with line features is (Taylor &
Kriegman, 1995). The advantage with respect to factorization is that it gives
the exact ML estimate, when it converges. The disadvantage, however, is that
it can get stuck in local minima, and thus a good initial estimate for structure
and motion needs to be available. To alleviate this, recursive estimation tech-
niques can be used to process the images as they arrive (Broida & Chellappa,
1991; Azarbayejani & Pentland, 1995).

2.4. SFMWITHOUT CORRESPONDENCES

In the case that the correspondences are unknown we cannot directly apply
the methods discussed in Section 2.3. Although we can still frame this case as
a problem of maximum likelihood estimation, solving it directly is intractable
due to the combinatorial nature of the data association problem. To see this,
note that the maximum likelihood estimate�� = (X�;M�) of structure and
motion givenonly the measurementsU is given by:

�� = argmax
�

logL(�;U) (4)

Although this might seem counterintuitiveat first, the above states thatwe can
find the ML structure and motion without explicitly reasoning about which
assignment might be correct. We ’only’ need to maximize the likelihood
L(�;U), which does directly not depend onJ. To calculateL(�;U), note
that by total probability we can write it as a sum of likelihood terms of the
form (1), with one term forevery possibleassignment vectorJ:

L(�;U) =
X
J

L(�;U;J) (5)

Now, for any realistic number of featuresn and number of imagesm, the
number of possibleassignments explodes combinatorially. Given our assump-
tions, there aren! possible assignment vectorsJi in each image, yielding
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a total ofn!m assignmentsJ. Under mild assumptions we can factor the
likelihoodL(�;U;J) over the different images, but even then the number
of assignments in each image remainsn!. In summary,L(�;U) is in general
hard to obtain explicitly, as it involves summing over a combinatorial number
of possible assignments.

2.5. THE EXPECTATION MAXIMIZATION ALGORITHM

A key insight is that we can use the well-known EM algorithm (Hartley,
1958; Dempster et al., 1977; McLachlan & Krishnan, 1997) to attack the
data association problem that arises in the context of structure from motion.
While a direct approach to computing the total likelihoodL(�;U) in (5) is
generally intractable, EM provides a practical method for finding its maxima.
The EM algorithm starts from an initial guess�0 for structure and motion,
and then iterates over the following steps:

1. E-step: Calculate the expected log likelihood functionQt(�):

Qt(�) =
X
J

f t(J) logL(�;U;J) (6)

where the expectation is taken with respect to the posterior distribution

f t(J)
�
= P (JjU;�t) over all possible assignmentsJ given the dataU

and a current guess�t for structure and motion.

2. M-step: Find the ML estimate�t+1 for structure and motion, by maxi-
mizingQt(�):

�t+1 = argmax
�

Qt(�)

It is important to note thatQt(�) is calculated in the E-step by evaluating
f t(J) using thecurrent guess�t for structure and motion (hence the super-
scriptt), whereas in the M-step we are optimizingQt(�) with respect to the
free variable� to obtain the new estimate�t+1. It can be proven that the EM
algorithm converges to a local maximum ofL(�;U) (Dempster et al., 1977;
McLachlan & Krishnan, 1997).

3. The M-step and Virtual Measurements

In this section we show that the M-step for structure from motion can be
implemented in a simple and intuitive way. We show that the expected log-
likelihood can be rewrittensuch that the M-step amounts to solving a struc-
ture from motion problem of the same size as before, but using as input a
newly synthesized set of virtual measurements, created in the E-step.
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To see this, first rewrite the expected log-likelihoodQt(�) in terms of sum
of squared errors, which we can do under the assumption of i.i.d. Gaussian
noise. By substituting the expression for the log likelihoodlogL(�;U;J)
from (3) in equation (6), we obtain:

Qt(�) = �
1

2�2

X
J

f t(J)
mX
i=1

nX
k=1

kuik � h(mi;xjik)k
2 (7)

The key to the efficiency of EM lies in the fact that the expression above
contains many repeated terms., and can be rewritten as

Qt(�) = �
1

2�2

mX
i=1

nX
j=1

nX
k=1

f tijkkuik � h(mi;xj)k
2 (8)

wheref tijk is themarginal posterior probabilityP (jik = jjU;�t). It can be
calculated by summingf t(J) over all possible assignmentsJ wherejik = j:

f tijk
�
= P (jik = jjU;�t) =

X
J

�(jik; j)f
t(J) (9)

where�(:; :) is the Kronecker delta function. Note that this not depend on the
assumption of Gaussian noise, but rather on the conditional independence of
image measurements. Note also that a similar trick cannot be applied to the
total likelihood (5), as the latter is a sum of likelihoods, notlog-likelihoods.

The main point to be made in this section is this: it can be shown by simple
algebraic manipulation that (8) can be written as the sum of a constant that
does not depend on�, and a new re-projection error ofn features inm images

Qt(�) = C �
1

2�2

mX
i=1

nX
j=1

kvtij � h(mi;xj)k
2 (10)

where thevirtual measurementsvtij are defined as

vtij
�
=

nX
k=1

f tijkuik (11)

Each virtual measurementvtij is simply a weighted average of the origi-
nal measurementsuik in the i-th image, and the weights are the marginal
probabilitiesf tijk .

The important point is that the M-step objective function (10) above, ar-
rived at by assumingunknowncorrespondence, is of exactly the same form as
the objective function (3) for the SFM problem withknowncorrespondence.
As a consequence,any of the existing SFM methods, of which many are dis-
cussed in Section 2.3, can be used to implement the M-step.This provides an
intuitive interpretation for the overall algorithm:
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1. E-step:Calculate the weightsf tijk from the distributionover assignments.
Then, in each of them images calculaten virtual measurementsvtij .

2. M-step: Solve a conventional SFM problem using the virtual measure-
ments as input.

In other words, the E-step synthesizes new measurement data, and the M-step
is implemented using conventional SFM methods. What is left is to show how
the E-step can be implemented.

4. Markov Chain Monte Carlo and the E-step

The previous section showed that, when given the virtual measurements, the
M-step can be implemented using any known SFM approach. As a con-
sequence, we need only concern ourselves with the implementation of the
E-step. In particular, we need to calculate the marginal probabilitiesf tijk =

P (jik = jjU;�t) needed to calculate the virtual measurementsvtij.
Unfortunately, due to themutual exclusionconstraint an analytic expres-

sion for the sufficient statisticsf tijk is hard to obtain. Assuming conditional
independence of the assignmentsJi in each image, we can factorf t(J) as:

f t(J) = P (JjU;�t) =
mY
i=1

P (JijUi;�
t)

whereUi are the measurements in imagei. Applying Bayes law, we have

P (JijUi;�
t) / P (Jij�

t) exp

"
�

1

2�2

nX
k=1

kuik � h(m
t
i;x

t
j)k

2

#
(12)

The second part of this expression is simple enough. However, the prior prob-
ability P (Jij�

t) of an assignmentJi encodes the knowledge we have about
the structure from motion domain: if a measurementuik has been assigned
jik = j, then no other measurement in the same image should be assigned the
same feature pointxj . In other words, if we assume thatvalid assignments
are all equally likely, the prior probability of an assignment is

P (Jij�
t) =

� 1
n! if Ji is a valid assignment
0 otherwise

(13)

While it is easy to evaluate the posterior probabilityf ti (Ji) for any given
assignmentJi through (12), the mutual exclusion constraint makes it difficult
to analytically express the weightsf tijk by substituting those expressions in
Equation 9. We know of no efficient closed form expression forf tijk.
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4.1. SAMPLING THE DISTRIBUTION OVER ASSIGNMENTSJi

The solution we employ is to insteadsamplefrom the posterior probability
distributionf ti (Ji) over valid assignments vectorsJi. Formally this can be
justified in the context of aMonte Carlo EMor MCEM, a version of the EM
algorithm where the E-step is executed by a Monte-Carlo process (Tanner,
1996; McLachlan & Krishnan, 1997).

To sample fromf ti (Ji)we use the Metropolis-Hastingsalgorithm, a Markov
Chain Monte Carlo method (MCMC) (Neal, 1993; Gilks et al., 1996; Doucet
et al., 2000). MCMC methods can be used to obtain approximate values for
expectations over distributions that defy easy analytical solutions. In our case,
the target distributionis the posterior distributionf ti (Ji) over assignment
vectorsJi in imagei. All MCMC methods work the same way: they generate
a sequence ofstates, in our case the assignmentsJi, with the property that
the collection of generated assignmentsJri approximates a sample from the
target distributionf ti (Ji). To accomplish this, aMarkov chainis defined over
the space of assignmentsJi, i.e. a transition probability matrix is specified
that gives the probability of transitioning from any given assignmentJi to any
other. The transition probabilities are set up in a very specific way, however,
such that thestationary distributionof the Markov chain is exactly the target
distributionf ti (Ji). This guarantees that, if we run the chain for a sufficiently
long time and then start recording states, these states constitute a (correlated)
sample from the target distribution.

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al.,
1953) is one way to simulate a Markov chain with the correct stationary
distribution, without explicitly building the full transition probability matrix
(which would be an intractable). In our case, we use it to generate a sequence
of R samplesJri from the posteriorf ti (Ji). The pseudo-code for the MH
algorithm is as follows (adapted from (Gilks et al., 1996)) :

1. Start with a valid initial assignmentJ0i .

2. Propose a new assignment using theproposal densityQ(J0i;J
r
i )

3. Calculate theacceptance ratio

a =
f ti (J

0

i)

f ti (J
r
i )

Q(Jri ;J
0

i)

Q(J0i;J
r
i )

(14)

wheref ti (Ji) = P (JijUi;�
t) is thetarget distribution.

4. If a >= 1 then acceptJ0i, i.e. we setJr+1i = J0i.
Otherwise, acceptJ0i with probabilitya. If the proposal is rejected, then
we keep the previous sample, i.e. we setJr+1i = Jri .
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EM, MCMC, and Chain Flipping for Structure from Motion 13

Intuitively, step 2 proposes “moves” in state space, generated according to a
probability distributionQ(J0i;J

r
i ) which is fixed in time but can depend on

the current stateJri . The calculation ofa and the acceptance mechanism in
steps3 and4 have the effect of modifying the transition probabilities of the
chain such that its stationary distribution is exactlyf ti .

The MH algorithm easily allows incorporating the mutual exclusion con-
straint: if an an assignmentJ0i is proposed that violates the constraint, the
acceptance ratio is simply0, and the move is not accepted. Alternatively, and
this is more efficient, one could take care never to propose such a move.

To compute the virtual measurements in (11), we need to compute the
marginal probabilitiesf tijk from the samplefJri g. Fortunately, this can be
done without explicitly storing the samples, by keeping running counts of
how many times each measurementuik is assigned to featurej. If we define
Ct
ijk to be this count, we have:

f tijk �
1

R
Ct
ijk (15)

Finally, in order to implement the sampler, we need to know how to pro-
pose new assignmentsJ0i (the proposal densityQ(Jri ;J

0

i), and how to com-
pute the ratioa. Both elements are discussed in detail in Section 7.

5. Summary of the Algorithm

The pseudo-code for the final algorithm is as follows:

1. Generate an initial structure and motion estimate�0.

2. Given�t and the dataU, run the Metropolis-Hastings sampler in each
image to obtain approximate values for the weightsf tijk (equation 15).

3. Calculate the virtual measurementsvtij with (11).

4. Find the new estimate�t+1 for structure and motion using the virtual
measurementsvtij as data. This can be done using any SFM method
discussed in Section 2.3.

5. If not converged, return to step 2.

In practice it is important to addannealingto this basic EM scheme, to avoid
getting stuck in local minima. In simulated annealing we artificially increase
the noise parameter� in early iterations, gradually decreasing it to its correct
value. This has two beneficial consequences. First, the posterior distribution
f ti (Ji) is less peaked when� is high, allowing the MCMC sampler to explore
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14 Dellaert, Seitz, Thorpe & Thrun

Figure 2. Three out of 11 cube images. Although the images were originally taken as a
sequence in time, the ordering of the images is irrelevant to our method.

t=0   σ=0.0 t=1   σ=25.1 t=3   σ=23.5 t=10   σ=18.7

t=20   σ=13.5 t=100   σ=1.0

Figure 3. The structure estimate as initialized and at successive iterationst of the algorithm.

the space of assignmentsJi more easily. Second, the expected log-likelihood
Qt(�) is smoother and has fewer local maxima for higher values of�.

6. Results for SFM without Correspondence

In this section we show results on three sets of images for which the SFM
problem is non-trivial in the absence of correspondence. For each set we
highlight a particular property of our method. For all the results we present,
the input to the algorithm was a set of manually obtained image measure-
ments. To initialize, the 3D pointsxj were generated randomly in a normally
distributed cloud around a depth of 1, whereas the camerasmi were all ini-
tialized at the origin. In each case, we ran the EM algorithm for 100 iterations,
with the annealing parameter� decreasing exponentially from 25 pixels to 1
pixel. For each EM iteration, we ran the sampler in each image for 10000
steps. An entire run takes about a minute of CPU time on a standard PC. As
is typical for EM, the algorithm can sometimes get stuck in local minima, in
which case we restart it manually.

In practice, the algorithm converges consistently and fast to an estimate for
the structure and motion where the correct assignment is the most probable
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Figure 4. 4 out of 5 perspective images of a house.

one, and where most if not all assignments in the different images agree with
each other. Weillustrate this using the image set shown in Figure 2, which was
taken under orthographic projection. The typical evolution of the algorithm
is illustrated in Figure 3, where we have shown a wire-frame model of the
recovered structure at successive instants of time. There are two important
points to note: (a)the gross structure is recovered in the very first iteration,
starting from random initial structure, and (b) finer details of the structure
are gradually resolved as the parameter� is decreased. The estimate for the
structure after convergence is almost identical to the one found by factoriza-
tion when given the correct assignment. Incidentally, we found the algorithm
converges less often when we replace the random initialization by a ’good’
initial estimate where all the points in some image are projected onto a plane
of constant depth.

To illustrate the EM iterations, consider the set of images in Figure 4 taken
under perspective projection. In the perspective case, we implement the M-
step as para-perspective factorization followed by bundle adjustment. In this
example we do not show the recovered structure (which is good), but show
the marginal probabilitiesf tijk at two different times during the course of the
algorithm, in Figure 5. In early iterations,� is high and there is still a lot
of ambiguity. Towards the end, the distribution focuses in on one consis-
tent assignment. If all the probability were concentrated in one consistent
assignment over all images, the largef tijk matrix would be a set of identical
permutation matrices stacked one upon the other.

The algorithm also deals with situations where the images are taken from
widely separate viewpoints, as is the case for the images in Figure 6. In this
sequence, the image features used were the colored beads on the wire-frame
toy in the image, plus four points on the ground plane. Images were taken
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Figure 5. The marginal probabilitiesf tijk at an early and at a later iteration, respectively.
Each row corresponds to a measurementuik, grouped according to image index, whereas the
columns represent then featuresxj. In this examplen = 58 andm = 5. Black corresponds
to a marginal probability of 1.

Figure 6. 6 out of 8 images of a wire-frame toy, taken from widely different viewpoints.
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Figure 7. Recovered structure for wire-frame toy re-projected in 2 images.

from both sides of the object. Because of the ’see-through’ nature of the
object, there is also a lot of potential confusion between image measurements.
Figure 7 shows the wire-frame model obtained by our method, where each of
the wires corresponds to one of the wires on the toy. Although in the final
iteration there is still disagreement between images about the most likely
feature assignment, the overall structure of the model is recovered despite
the arbitrary configuration of the cameras.

7. An Efficient Sampler

The EM approach for structure and motion without correspondence outlined
in the previous sections is a statistically sound way to deal with a difficult data
association problem. However, in order for it to scale up to larger problems, it
is imperative that it is alsoefficient. Especially the reliance on a Monte Carlo
estimate for the expectations calculated in the E-stepmightseem troublesome
in this regard. In this section we show that the Metropolis-Hastings method
can be made to very effectively sample from weighted assignments, yielding
an efficient E-step implementation.

The convergence of the Metropolis-Hastings algorithm depends crucially
on the proposal densityQ. We need a proposal strategy that leads to a rapidly
mixing Markov chain, i.e. one that converges quickly to the stationary distri-
bution. Below we discuss three different proposal strategies, each of which
induces a Markov chain with increasingly better convergence properties.
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18 Dellaert, Seitz, Thorpe & Thrun

7.1. PRELIMINARIES

It is convenient at this time to look at the sampling in each image in isolation,
and think of it in terms ofweighted bipartite graph matching.Consider the
bipartite graphG = (U; V; E) in imagei where the verticesU correspond to

the image measurements, i.e.uk
�
= uik , and the verticesV are identified with

the projected features, given the current guess�t for structure and motion, i.e.

vj
�
= h(mt

i;x
t
j). Bothk andj range from1 ton, i.e. jU j = jV j = n. Finally,

the graph is fully connectedE = U�V , and we associate the followingedge
weightwith each edgee = (uk; vj):

w(uk; vj)
�
=

1

2�2
kuk � vjk

2 =
1

2�2
kuik � h(m

t
i;x

t
j)k

2

A matchingis defined as a subsetM of the edgesE, such that each vertex is
incident to at most one edge. Anassignmentis defined as a perfect matching:
a set ofn edges such that every vertex is incident to exactly one edge.

Given these definitions, it is easily seen that every assignment vectorJi
corresponds to an assignment in the bipartite graphG, so we use the same
symbol to denote both entities. Furthermore, we use the notationJi(u) to
denote the match of a vertexu, i.e.Ji(uk) = vj iff jik = j. Recalling equation
(12), it is easily seen thatfor valid assignmentsJi , the posterior probability
f ti (Ji) can be expressed in terms of the edge weights as follows:

f ti (Ji) / exp

"
�

1

2�2

nX
k=1

kuik � h(m
t
i;x

t
j)k

2

#
/ e�w(Ji) (16)

where theweightw(Ji) of an assignment is defined as

w(Ji) =
nX

k=1

w(uk;Ji(uk))

Expression (16) has the form of a Gibbs distribution, wherew(Ji) plays the
role of an energy term: assignments with higher weight (energy) are less
likely, assignments with lower weight (energy) are more likely.

Thus, the problem of sampling from the assignment vectorsJi in the struc-
ture and motion problem is equivalent to sampling from weighted assignments
in the bipartite graphG, where the target distribution is given by the Gibbs
distribution (16). Below we drop the image indexi, and think solely in terms
of the weighted assignment problem.

7.2. FLIP PROPOSALS

The simplest way to propose a new assignmentJ 0 from a current assignment
J is simply to swap the assignment of two randomly chosen verticesu:
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(a) (b) (c) (d) (e)

Figure 8. An ambiguous assignment problem withn = 3. The regular arrangement of the
vertices yields two optimal assignments, (a) and (e), whereas (b-d) are much less likely. The
figure illustrates a major problem with “flip proposals”: there is no way to move from (a) to
(e) via flip proposals without passing through one of the unlikely states (b-d).

1. Pick two matched edges(u1; v1) and(u2; v2) at random.

2. Swap their assignments, i.e. setJ 0(u1) v2 andJ 0(u2) v1

To calculate the ratioa, note that the proposal ratioQ(J;J
0)

Q(J 0;J) = 1. Thus, the
acceptance ratioa is equal to the probability ratio, given by

a =
P (J 0)

P (J)
= exp [w(u1; v1) + w(u2; v2)� w(u1; v2)� w(u2; v1)]

Even though this “flip proposal” strategy is attractive from a computa-
tional point of view, it has the severe disadvantage of leading to slowly mixing
chains in many instances. To see this, consider the arrangement withn = 3
in Figure 8. There is no way to move from the most likely configurations (a)
to (e) via flip proposals without passing through one of the unlikely states
(b-d). An MCMC sampler that proposes only such moves can stay stuck in
the modes (a) or (e) for a long time.

7.3. AUGMENTING PATHS AND ALTERNATING CYCLES

In order to improve the convergence properties of the chain, we use the idea
of randomly generating anaugmenting path, a construct that plays a cen-
tral role in deterministic algorithms to find the optimal weighted assignment
(Bertsekas, 1991; Cook et al., 1998; Papadimitriou & Steiglitz, 1982). The
intuition behind an augmenting path is simple: it is a way to resolve conflicts
when proposing a new assignment for some random vertex inU . When sam-
pling, an idea for a proposal density is to randomly pick a vertexu and change
its assignment, but as this can lead to a conflict, we propose to use a similar
mechanism resolve the conflict recursively.

We now explain augmenting paths following (Kozen, 1991). Assume we
have a partial matchingM . An example is given in Figure 9 (a). Now pick
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(a) (b) (c)

Figure 9. Augmenting paths. (a) Original, partial matching. (b) An augmenting path, alter-
nating between free and matched edges. (c) The resulting matching after augmenting the
matching in (a) with the path in (b) .

(a) (b) (c)

Figure 10. (a) Original assignment. (b) An alternating cycle implementing a k-swap, with k=3
in this example. (c) Newly obtained assignment.

an unmatched vertexu, and propose to match it up withv. We indicate this
by traversing the free edge(u; v). If v is free, we can simply add this edge to
the matchingM . However, ifv is not free we cancel its current assignment
by traversing thematchededge(v; u0). We then recurse, until a free vertex in
V is reached, tracing out theaugmenting pathp. One such a path is shown
in Figure 9 (b). Now the matching can beaugmentedtoM 0 by swapping the
matched and the free edges inp. This augmentationoperation is written as
M 0 = M � p, where� is the symmetric difference operator on sets

A� B = (A [B) � (A \B) = (A� B) [ (B � A)

For the example, the resulting matching is shown in Figure 9 (c). Algorithms
to find optimal matchings start with an empty matching, and then perform a
series of augmentations until a maximal matching is obtained.

For sampling purposes alternatingcyclesare of interest, because they im-
plement k-swaps. An example is shown forn = 4 in Figure 10. In contrast to
the optimal algorithms, when sampling we start out with a perfect matching
(an assignment), and want to propose a move to a different -also perfect-
matching. We can do this by proposing the matchingJ 0 = J � C, where
C is an alternating cycle, which has the effect of permuting a subset of the
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assignments. Such permutations that leave no element untouched are also
calledderangements.

7.4. PROPOSINGMOVES BY “CHAIN FLIPPING”

Recall that the goal is to sample from assignmentsJ using the Metropolis-
Hastings algorithm. We now advance a new strategy to generate proposed
moves, through an algorithm that we call “chain flipping” (CF). The algo-
rithm is based on randomly generating an alternating cycle according to the
following algorithm:

1. Pick a random vertexu0 in U

2. Choose a matchv in V by traversing the edgee = (u; v) according to the
transition probabilities

q(u; v)
�
=

exp(�w(u; v))P
v exp(�w(u; v))

(17)

which accords higher probability to edgese = (u; v) with lower weight.

3. Traverse the matched edge(v; u0) to undo the former match.

4. Continue with 2 until a cycle is formed.

5. Erase the transient part to get an alternating cycleC.

This algorithm simulates a Markov chainMC defined on the bipartite graph
G and terminates the simulation when a cycle is detected. The resulting alter-
nating cycleC is used to propose a new assignmentJ 0 = J�C, i.e. we “flip”
the assignments on the alternating cycle or “chain” of alternating edges.

We also need to calculate the acceptance ratioa. As it happens, we have

aCF =
P (J 0)

P (J)

Q(J ; J 0)

Q(J 0; J)
= 1 (18)

To prove this, note that by (16) and (17) the probability ratio is given by

P (J 0)

P (J)
=
e�w(J

0)

e�w(J)
=
Y
u2C

q(u; J 0(u))

q(u; J(u))
(19)

The proposal densityQ(J 0; J) is equal to the probability of proposing a cycle
C that yieldsJ 0 from J , which is given by:

Q(J 0; J) =

0
@ Y
(u;v)2p

q(u; J 0(u))

1
AX

T

PMC(T ) (20)

ml.tex; 27/12/2000; 9:23; p.21



22 Dellaert, Seitz, Thorpe & Thrun

 1: a= 0.58 (A)  2: a= 0.58 (A)  3: a= 2.99 (A)  4: a= 0.58 (R)  5: a= 1.00 (A)

 6: a= 1.00 (A)  7: a= 0.58 (R)  8: a= 1.00 (A)  9: a= 1.00 (A) 10: a= 1.00 (A)

11: a= 0.58 (R) 12: a= 1.00 (A) 13: a= 1.00 (A) 14: a= 1.00 (A) 15: a= 0.58 (A)

16: a= 1.73 (A) 17: a= 0.58 (A) 18: a= 1.00 (A) 19: a= 1.73 (A) 20: a= 1.00 (A)

Figure 11. 20 iterations of an MCMC sampler with the “smart chain flipping” proposals. For
each iteration we showa and whether the move was accepted (A) or rejected (R).

where the sum is over all transient pathsT that end on the cycleC, and
PMC(T ) is the probability of one such transient. The probabilityQ(J ; J 0)
of proposingJ starting fromJ 0 is similarly obtained, and substituting both
together with (19) into (18) yields the surprising resulta = 1.

A distinct advantage of the CF algorithm is that, as with the Gibbs sam-
pler (Gilks et al., 1996), every proposed move is always accepted. Then2

transition probabilitiesq(u; v) are also fixed and can be easily pre-computed.
A major disadvantage, however, is that many of the generated paths do not
actually change the current assignment, making the chain slower than it could
be. This is because in step2 there is nothing that prevents us from choosing
a matched edge, leading to a trivial cycle, and in steady state matched edges
are exactly those with high transition probabilities.

7.5. ”SMART CHAIN FLIPPING”

An obvious modification to the CF algorithm, and one that leads to very
effective sampling, is to make it impossible to traverse through a matched
edge when generating the proposal paths. This ensures that every proposed
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move does indeed change the assignment,if it is accepted. However, now the
ratioa can be less than1, causing some moves to be rejected.

Forcing the chosen edges to be free can be accomplished by modifying
the transition probabilitiesq(u; v). We denote the new transition probabilities
asqJ(u; v), as they depend on the current assignmentJ , and define them as
follows:

qJ(u; v)
�
=

8<
:

exp(�w(u;v))P
v 6=J(u)

exp(�w(u;v))
if v 6= J(u)

0 if v = J(u)

i.e. we disallow the transition through a matched edge. We can rewrite this in
terms of the transition probabilitiesq(u; v) defined earlier in (17), as follows

qJ(u; v) =

(
q(u;v)

1�q(u;J(u)) if v 6= J(u)

0 if v = J(u)

Note thatthese depend on the current assignmentJ , but in an implementa-
tion their explicit calculation can be avoided by appropriately modifying the
cumulative distribution function ofq at run-time.

This proposal strategy, which we call “smart chain flipping” (SMART),
generates more exploratory moves than the CF algorithm, but at the expense
of rejecting some of the moves. It can be easily verified that we now have

aSMART =
Y
u2C

1� q(u; J(u))

1� q(u; J 0(u))

In Figure 11 we have shown 20 iterations of a Metropolis-Hastings sampler
using the SMART proposals, and also show the value ofa and whether the
move was accepted (A) or rejected (R).

8. Results for Efficient Sampling

In this section we show experimental results supporting the intuition that
“smart chain flipping” leads to rapidly mixing chains. To assess the con-
vergence of the sampler under different conditions, we use the approach
discussed in (Gelman, 1996): we graph the time series for a single summary
statistic in multiple, concurrently run MCMC simulations. Convergence can
be assumed if all time series converge to the same value for the statistic.
Displays such as this also give a qualitative understanding of the behavior of
the different strategies, as we discuss in more detail below.

For Figure 12, we sample from a distributionover assignments withn = 4,
for the configuration of features and observations as shown in Figure 11.
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Figure 12. Assessing the convergence for the different proposal strategies. When converged,
the time series for the three parallel runs in each figure should converge on the same value. See
text for more explanation. (top) “Flip proposals”, (middle) “chain flipping”, (bottom) “Smart
chain flipping”. On the left,� = 0:9R, on the right� = 0:5R. The configuration that is being
sampled over is the same as in Figure 11.
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It is clear from the latter figure that there are two globally optimal assign-
ments, leading to a strongly bimodal distribution. In Figure 12 we show
the convergence of each of the three proposal strategies discussed above,
respectively from top to bottom: “flip proposals”, “chain flipping”, and “smart
chain flipping”. For each strategy, we show the results for a relatively smooth
distribution (� = 0:9R, shown at left), and a relatively peaked distribution
(� = 0:5R, shown at right). The summary statistic used is the proportion of
samples that assigns observation1 to feature1, estimated by the average

Ĵ11
�
=

1

T

X
t

�(J t(1); 1)

In the case of the low value for�, this value is expected to be equal to0:5,
and smaller for higher values of�. In all cases, the sampler was run for1100
iterations, the first100 of which were discarded as a transient.

We draw the following inferences from these figures:

� “Flip proposals” are very slowly mixing and get stuck on high proba-
bility assignments, especially for peaked distributions (low�). This is
evident from Figure 12 (b).

� “chain flipping” leads to better mixing, but from the Figure 12 (c) and
(d) it is clear that there are long stretches where the assignment is not
changed much if at all.

� Dramatically better performance is obtained using “smart chain flip-
ping”, especially for the peaked distribution on the right. The conver-
gence to the bimodal distribution is almost immediate when compared
to the other strategies. Convergence is somewhat slower for a high value
of �, as there are many more probable states that take some time to be
visited often enough.

9. Related Work

In recent years, EM has become a popular algorithm for estimating models
of various sorts from incomplete data. As outlined in the introduction, the
issue of incomplete data and the data association problem are closely related,
though not identical. Other applications, such as the Baum-Welch algorithm
for learning hidden Markov model (Rabiner & Juang, 1986), do not assume
a one-to-one correspondence between measurements and model parameters.

The structure from motion problem has been studied extensively in the
computer vision literature over the past decade, as we have discussed in detail
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in Section 2.3. In the introduction and in Section 2 we discussed the short-
comings of the existing methods for data-association in the SFM literature.

The SFM problem is similar, and in some cases equivalent, to the map
learning problem in robotics. Here a mobile robot is given a sequence of
sensor measurements (e.g., range measurements) along with odometry read-
ings, and seeks to construct a map of its environment. In the case of bear-
ing measurements on discrete features, thisconcurrent mapping and local-
ization (CML) (Leonard & Feder, 1999), is mathematically identical to a
SFM problem. One of the dominant families of algorithms relied on recur-
sive estimation of model features and robot poses by a variable dimension
Kalman filter (Castellanos et al., 1999; Castellanos & Tard´os, 2000; Leonard
& Durrant-Whyte, 1992; Leonard et al., 1992).

The classical target tracking literature provides a number of methods for
data-association (Bar-Shalom & Fortmann, 1988) that are used in computer
vision (Cox, 1993) and CML (Cox & Leonard, 1994; Feder et al., 1999), such
as nearest neighbor tracking (Deriche & Faugeras, 1990), the track splitting
filter (Zhang & Faugeras, 1992), and the multiple hypothesis filter (Reid,
1979; Cox & Leonard, 1994; Cox & Hingorani, 1994). Unfortunately the
latter, more powerful methods have exponential complexity so suboptimal
approximations are used in practice. Moreover, the strategies for hypothesis
pruning are based on assumptions such as motion continuity that are often
violated in practice (Seitz & Dyer, 1995). Thus, they are not directly applica-
ble to the SFM or CML problem when the measurements do not arrive in a
temporally continuous fashion, as we have assumed.

Thus, both vision and map learning approaches assume that the data as-
sociation problem is solved, either through uniquely identifiable features in
the environment of a robot, or through sensor streams that make it possi-
ble to track individual features. Of particular difficulty, thus, is the problem
of mapping cyclic environments (Gutmann & Konolige, 2000), where fea-
tures cannot be tracked and the data association problem arises naturally.
Recently, an alternative class of algorithms has been proposed that addresses
the data association problem (Burgard et al., 1999; Shatkay & Kaelbling,
1997; Shatkay, 1998; Thrun et al., 1998b, 1998a). Like ours, these algorithms
are based on EM, and they have been demonstrated to accommodate ambi-
guities and large odometric errors. These algorithms are similar in spirit to
the one proposed here in that they formulate the mapping problem as esti-
mation problem from incomplete data, and use the E-step of EM to estimate
expectations over those missing data. There are essential differences, though.
In particular, these algorithms consider the camera positions as missing data,
whereas ours regard the camera poses as model parameters, and instead the
correspondence matrix is being estimated in the E-step.

The new proposal strategies we propose for efficient sampling of assign-
ments bear an interesting relation to research in the field of computational
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complexity theory. In particular, the “chain flipping” proposal is related in
terms of mechanism, if not description, to the Broder chain, an MCMC type
method to generate (unweighted) assignments at random (Broder, 1986). How-
ever, our method is specifically geared towards sampling fromweightedas-
signments, and uses the weights to bias proposals towards more likely as-
signments. Recently, polynomial approximation bounds have been proven for
Broder-type algorithms (Jerrum & Sinclair, 1997), and there is hope that these
proofs could be modified to prove hard properties for our method, as well.

10. Discussion

In this paper we have presented a novel tool, which enables us to learn models
from data in the presence of non-trivial data association problems. We have
applied it successfully to the structure from motion problemwith unknown
correspondence, significantly extending the applicability of these methods to
new imaging situations. In particular, our method can cope with images given
in arbitrary order and taken from widely separate viewpoints, obviating the
temporal continuity assumption needed to track features over time.

Despite the space we have devoted to explaining the rationale behind
it, the final algorithm is simple and easy to implement. As summarized in
Section 5, at each iteration one only needs to obtain a sample of proba-
ble assignments, compute the virtual measurements, and solve a synthetic
SFM problem using known methods. In addition, we have developed a novel
sampling strategy, called “smart chain flipping”, to calculate these virtual
measurements efficiently using the Metropolis-Hastings algorithm.

However, there is plenty of opportunity for future work. In this paper,
we make the commonly made assumption that all 3D features are seen in
all images (Tomasi & Kanade, 1992; Hartley, 1994; McLauchlan & Murray,
1995). The development of our approach does not depend on this assumption,
however. We are currently extending and evaluating the approach to deal with
spurious measurements, by the introduction of a NULL feature, as e.g. in
(Gold et al., 1998), and with occlusion, through the development of a more
sophisticated prior on assignments. The process of occlusion, however, is
a systematic phenomenon which is not accurately modeled by assuming a
simple independent probability of occlusion foreach 3D feature. In order to
deal with this in a principled manner, we are investigating the use of a Markov
random field prior (Li, 1995; Winkler, 1995) on occlusion, similar in spirit to
(MacCormick & Blake, 1998). It also introduces the thorny issue of model
selection, as in the presence of occlusion it is not commonly known a priori
how many features actually exist in the world. This problem of model selec-
tion has been addressed successfully before in the context of vision (Ayer &
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Sawhney, 1995; Torr, 1997), and it is hoped that the lessons learned there can
equally apply in the current context.

As argued in the introduction to this paper, the data association problem
arises in many problems of learning models from data. While the current
work has been phrased in the context of the structure from motion problem in
computer vision, we conjecture that the general approach is more widely ap-
plicable. For example, as discussed above, the robot mapping problem shares
a similar set of constraints, making the chain flipping proposal distribution
directly applicable. Thus, just as we employed of-the-shelf techniques for
solving the SFM problem withknowncorrespondences, EM and our new
MCMC techniques can be stipulated to the rich literature on concurrent map-
ping and localization (CML) with known correspondences. Such an approach
would ”bootstrap” these techniques to cases withunknowncorrespondence,
which has great practical importance, particularly in the area of multi-robot
mapping. As a second example, we suspect that our MCMC chain flipping
approach is also applicable to visual object identification from distributed
sensors, where others (Pasula, Russell, Ostland, & Ritov, 1999) have already
successfully applied EM and MCMC to solve the data association problem.
Data association problems occur in a wide range of learning models from
data. The application of our approach to other data association problems is
subject of future research.
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