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Abstract

In the 1970s, most research in robotics presupposed the availability of exact models, of robots and
their environments. Little emphasis was placed on sensing and the intrinsic limitations of modeling
complex physical phenomena. This changed in the mid-1980s, when the paradigm shifted towards
reactive techniques. Reactive controllers rely on capable sensors to generate robot control. Rejections
of models were typical for researchers in this field. Since the mid-1990s, a new approach has begun
to emerge: probabilistic robotics. This approach relies on statistical techniques to seamlessly integrate
imperfect models and imperfect sensing. The present article describes the basics of probabilistic robotics
and highlights some of its recent successes.

1 Introduction

In recent years, the field of robotics has made substantial progress. In the past, robots were mostly confined
to factory floors and assembly lines, bound to perform the same narrow tasks over and over again. A recent
series of successful robot systems, however, has demonstrated that robotics has advanced to a level where it
is ready to conquer many new fields, such as space, medical domains, personal services, entertainment, and
military applications. Many of these new domains are highly dynamic and uncertain. Uncertainty arises for
many different reasons: the inherent limitations to model the world, noise and perceptual limitations in a
robot’s sensor measurements, and the approximate nature of many algorithmic solutions. In this uncertainly
lies one of the primary challenges faced by robotics research today.

Three examples of successful robot systems that operate in uncertain environments are shown in Fig-
ure 1. a commercially deployed autonomous straddle carrier [3], an interactive museum tourguide robot [7,
11], and a prototype robotic assistant for the elderly. The straddle carrier is capable of transporting contain-
ers faster than trained human operators. The tourguide robot—one in a series of many—can safely guide
visitors through densely crowded museums. The Nursebot robot is presently being developed to interact
with elderly people and assist them in various daily tasks. All of these robots have to cope with uncertainty.
The straddle carrier faces intrinsic limitations when sensing its own location and that of the containers. A
similar problem is faced by the museum tourguide robot, but here the problem is aggravated by the presence
of people. The elderly companion robot faces the additional uncertainty of having to understand spoken
language by elderly people, and coping with their inability to express their exact wishes. In all these appli-
cation domains, the environments are highly unpredictable, and sensors are comparatively poor with regard
to the performance tasks at hand.
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Figure 1: Three robots controlled by probabilistic software: A robotic straddle carrier, a museum tourguide
robot, and the Nursebot, a robotic assistant for nurses and the elderly.

As these examples suggest, the ability to accommodate uncertainty is a key requirement for contempo-
rary robotic systems. This raises the question as to appropriate mechanisms for coping with uncertainty.
What type of internal world models should robots employ? And how should sensor measurements be inte-
grated into their internal states of information? How should robots make decisions even if they are uncertain
about even the most basic state variables in the world?

The probabilistic approach to robotics addresses these questions through a single key idea: representing
information probabilistically. In particular, world models in the probabilistic approach are conditional prob-
ability distributions, which describe the dependence of certain variables on others in probabilistic terms. A
robot’s state of knowledge is also represented by probability distributions, which are derived by integrating
sensor measurements into the probabilistic world models given to the robot. Probabilistic robot control an-
ticipates various contingencies that might arise in uncertain worlds, thereby seamlessly blending information
gathering (exploration) with robust performance-oriented control (exploitation).

The move to probabilistic techniques in robotics is paralleled in many other subfields of artificial intelli-
gence, such as computer vision, language, and speech. Probabilistic robotics leverages decades of research
in probability theory, statistics, engineering and operations research. In recent years, probabilistic tech-
nigues have solved many outstanding robotics problems, and they have led to new theoretical insights into
the structure of robotics problems and their solutions.

2 Models, Sensors, and The Physical World

Classical robotics textbooks often describe at length the kinematics and dynamics of robotic devices. These
topics address the question of how controls affect the state of the robot and, more broadly, the world.
However, textbooks often suggest a deterministic relationship: The effect of applying control action  to the
robot at state x is governed by the functional relationship =’ = f(u, ), for some (deterministic) function f.
For example, x might be the configuration and velocity of a robotic arm, and « might be the motor currents
asserted in a fixed time interval. Such an approach characterizes idealized robots only—free of wear and
tear, inaccuracies, control noise, and the alike. In reality, the outcomes of control actions are uncertain.
For example, a robot that executes a control leveraging its position by one meter forward might expect to
be exactly one meter away from where it started, but in reality will likely find itself in an unpredictable
location nearby. The probabilistic approach accounts for this uncertainty by using conditional probability
distributions to model robots. Such models, commonly denoted p(z’|u, x), specify the posterior probability
over states z’ that might result when applying control « to a robot whose state is . Put differently, instead of
making a deterministic prediction, probabilistic technigues model the fact that the outcome of robot controls



Algorithm particleFilters(X, u, z)
let X' =X}, . =0

aux

// forward projection step
fori =1toN do
retrievei-th particle x; from particle set X
draw x}; ~ p(2'|u, ;) using the motion model p(z'|u, x)
add «); to X .
end for

// resampling step
forj=1toN do
draw random x’; from X, with probability proportional to p(z|z)
add x j to X’
end for
return X'
end algorithm

Table 1: Basic particle filter algorithm, which implements Bayes filters using approximate particle repre-
sentation. The posterior is represented by a set of IV particles X, which is roughly distributed according to
the posterior distribution of all states x given the data that is commonly calculated by Bayes filters.

is uncertain, by assigning a probability distribution over the space of all possible outcomes. As such, they
generalize classical kinematics and dynamics to real-world robotics.

In the same vein, many traditional textbooks presuppose that the state of the robot = be known at all
times. Usually, the state = comprises all necessary quantities relevant to robot prediction and control, such
as the robot’s configuration, its pose and velocity, the location of surrounding items (obstacles, people, etc.).
In idealized worlds, the robot might possess sensors that can measure, without error, the state . Such
sensors may be characterized by a deterministic function g, capable of recovering the full state from sensor
measurements z, that is, x = g(z). Real sensors are characterized by noise and, more importantly, by
range limitations. For example, cameras cannot see through walls. The probabilistic approach generalizes
this idealized view by modeling robot sensors by conditional probability distributions. Sensors may be
characterized by forward models p(z|x), which reason from state to sensor measurements, or their inverse
p(z|z)—depending on algorithmic details beyond the scope of this article.

As this discussion suggests, probabilistic models are indeed generalizations of their classical counter-
parts. The explicit modeling of uncertainty, however, raises fundamental questions as to what can be done
with these world models. Can we recover the state of the world? Can we still control robots so as to achieve
set goals?

3 Probabilistic State Estimation

A first answer to these questions can be found in the rich literature on probabilistic state estimation. This
literature addresses the problem of recovering the state variables x from sensor data. Common state variables
include

e parameters regarding the robot’s configuration, such as its location relative to an external coordinate
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Figure 2: Evolution of the conditional particle filter from global uncertainty to successful localization and
tracking.

frame. The problem of estimating such parameters is often referred to as localization,

e parameters specifying the location of items in the environment, such as the location of walls, doors,
and objects of interest. This problem, known as mapping, is regarded one of the most difficult state
estimation due to the high dimensionality of such parameter spaces [1], and

e parameters of objects whose position changes over time, such as people, doors, and other robots. This
problem is similar to the mapping problem, with the added difficulty changing locations over time.

The predominant approach for state estimation in probabilistic robotics is known as Bayes filters. Bayes
filters offer a methodology for estimating a probability distribution over the state x, conditioned on all
available data (controls and sensor measurements). They do so recursively, based on the most recent control
u and measurement z, the previous probabilistic estimate of the state, and the probabilistic models p(z'|x, u)
and p(z|x) discussed in the previous section. Thus, Bayes filter do not just “guess” the state =. Rather, they
calculate the probability that any state x is correct. Popular examples of Bayes filters are hidden Markov
models, Kalman filters, dynamic Bayes networks and partially observable Markov decision processes [5,
10].

For low-dimensional state spaces, research in robotics and applied statistics has produced a wealth of
literature on efficient probabilistic estimation. Remarkably popular is an algorithm known as particle filters,
which in computer vision is known as condensation algorithm and in robotics as Monte Carlo localiza-
tion [2]. This algorithm approximates the desired posterior distribution through a set of particles. Particles
are samples of states = which are distributed roughly according to the very posterior probability distribution
specified by Bayes filters. Table 1 states the basic particle filtering algorithm. In analogy to Bayes filters,
the algorithm generates a particle set X’ recursively, from the most recent control «, the most recent mea-
surement z, and the particle set X that represents the probabilistic estimate before incorporating » and z. It
does so in two phases: First, it “guesses” states x; based on particles drawn from X and the probabilistic
motion model p(z'|u, z). Subsequently, these guesses are resampled in proportion to the perceptual like-
lihood, p(z|z}). The resulting sample set is approximately distributed according to the Bayesian posterior,
taking « and z into account.

Figure 2 illustrates particle filters via an example. A mobile robot, equipped with a laser range finder,
simultaneously estimates its location relative to a two-dimensional map of a corridor environment and the
number and locations of nearby people. In the beginning (Panel 2(a)), the robot is globally uncertain as to
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Figure 3: (a) 3D volumetric map, acquired by a mobile robot in real-time. The lower part of the map is below
the robot’s sensors, hence is not modeled. (b) Map of underwater landmarks, acquired by the submersible
vehicle Oberon at the University of Sydney. Courtesy of Stefan Williams and Hugh Durrant-Whyte.

where it is. Consequently, the particles representing its location and that of the person are spread throughout
the free space in the map. As the robot moves (Panel 2(b)), the particles representing the robot’s location
quickly converge to two distinct locations in the corridor, as do the particles representing the person’s lo-
cation. A few time steps later, the ambiguity is resolved and both sets of particles focus on the correct
positions in the map, as shown in Panel 2(c). Localization algorithms based on particle filters are arguable
the most powerful algorithms in existence. As this example illustrates, particle filters can represent a wide
range of multi-modal distributions. They are easily implemented as resource-adaptive algorithm, capable
of adapting the number of particles to the available computational resources. And finally, they converge for
a large range of distributions, from globally uncertain to near-deterministic cases.

4 TowardsMillions of Dimensions

In high-dimensional state spaces, computational considerations may pose serious obstacles when estimating
state. Robot mapping, to name a popular example of a high-dimensional problem, often involves thousands
of dimensions, if not millions! For example, the volumetric map shown in Figure 3(a) is comprised of
several millions of texture values, in addition to thousands of structural parameters. This raises the question
as to whether probabilistic techniques are equipped to perform state estimation in such high-dimensional
spaces. The answer is quite intriguing. To date, virtually all state-of-the-art algorithms in areas such as
localization, mapping, and people tracking are probabilistic.

Many probabilistic approaches estimate the mode of the posterior, which is simply the most likely state
x (there might be more than one). Some techniques, such as Kalman filters, also compute a covariance
matrix, which measures the curvature of the posterior at the mode. The specific techniques for estimating
the mode and the covariance vary widely, depending on the nature of the state estimation problem. In the
robotic mapping problem, two of the most widely used algorithms are extended Kalman filters (EKFs) [5]
and the expectation maximization (EM) algorithm [6]. Extended Kalman filters are applicable when the
posterior can reasonably assumed to be Gaussian. This is usually the case when mapping the locations of
landmarks that can be uniquely identified. Kalman filter techniques have proven to be capable of mapping



large-scale outdoor and underwater environments while simultaneously estimating the location of the robot
relative to the map [1]. Figure 3(b) shows an example map of landmarks in an underwater environment,
obtained by researchers at the University of Sydney [12].

In the general mapping problem, the desired posterior may have exponentially many modes—not just
one. Different modes commonly arise from uncertainty in calculating the correspondence between map
items sensed at different points in time—a problem commonly known as data association problem. Many
of today’s best algorithms for state estimation with unknown data association are based on the EM algo-
rithm [6]. This algorithm performs a local hill-climbing search in the space of all states x (e.g., maps), with
the aim of calculating the mode. The “trick” of the EM algorithm is to search iteratively, by alternating a
step that calculates expectations over the data association and related latent variables, followed by a step
that computes a new mode under these fixed expectations. This leads to a sequence of state estimates (e.g.,
maps) of increasing likelihood. In cases where both these steps can be calculated in closed form, EM can be
a highly effective algorithm for estimating the mode of complex posteriors. For example, the map shown in
Figure 3(a) has been generated through an on-line variant of the EM algorithm, accommodating errors in the
robot odometry and exploiting a Bayesian prior that biases the resulting maps towards planar surfaces [4].
In all these applications, probabilistic model selection techniques are employed for finding models of the
“right” complexity.

5 Probabilistic Planning and Control

State estimation is only half the story. Clearly, the ultimate goal of any robotics software system is to control
robotic devices. It should come at no surprise that probabilistic techniques specifically take uncertainty into
consideration when devising robot control. By doing so, they are robust to sensor noise and incomplete
information. Probability theory provides a sound framework for active information gathering, smoothly
blending exploration and exploitation as most beneficial for the control goals at hand.

Existing probabilistic control algorithms can mainly be grouped into two categories: greedy and non-
greedy. Both families assume the availability of a payoff function, which specifies the costs and benefits
associated with the various control choices. Whereas greedy algorithms maximize the payoff for the imme-
diate next time step, non-greedy algorithm consider entire sequences of controls, thereby maximizing the
(more appropriate) cumulative payoff of the robot. Clearly, non-greedy methods are more desirable from
a performance point of view. The computational complexity of planning under uncertainty, however, make
greedy algorithms welcome alternatives that have found widespread applications in practice.

The immediate next payoff is easily calculated by maximizing the conditional expectation of the payoff
under the posterior probability over the state space. Thus, greedy techniques maximize a conditional expec-
tation. In the museum tourguide project, such an approach was successfully employed to prevent the robot
from falling down staircases. Similar techniques have been successfully brought to bear for active environ-
ment exploration with teams of robots [9], using payoff functions that measure the residual uncertainty in
the map.

Non-greedily optimizing robot control—over multiple time steps—remains a challenging computational
problem. This is because the robot has to consider multiple contingencies during planning, paying tribute
to the uncertainty in the world. Worse so, the number of contingencies may increase exponentially with the
planning horizon, which makes for a most challenging planning problem [10].

Nevertheless, recent research has led to a flurry of approximate algorithms that are computationally
efficient. The coastal navigation algorithm described in [8] condenses the posterior belief to two quantities:
the most likely state, and the entropy of the posterior. This state space representation is exponentially more
compact than the space of all posterior distributions. It captures, however, still the degree of uncertainty in



the robot’s posterior. Planning with this condensed state space has led to scalable robotic planning systems
that can cope with uncertainty. For example, in a mobile robot implementation reported in [8], this technique
has been found to navigate robots closed to known landmarks, in order to minimize the danger of getting
lost—even though this might increase the overall path length. Experimentally, coastal navigation was shown
to be superior to motion planners that do not regard uncertainty in the planning process, in densely populated
environments. This and many other examples in the literature illustrate how a careful consideration of
uncertainty often leads to superior control algorithms, which explicitly consider uncertainty in planning and
control.

6 Conclusion

This article provided a brief introduction into the vibrant field of probabilistic robotics. The key idea of
probabilistic approaches is a commitment to probability distribution as the basic representation of informa-
tion. They provide sound solutions for the integration of inaccurate model information and noisy sensor
data.

To date, probabilistic robotics is one of the most rapidly growing subfield of robotics. While many
research challenges remain, the approach has already led to fundamentally more scalable solutions to many
hard robotics problems, specifically in the area of mobile robotics. They have led to deep mathematical
insights into the structure of robotics problems and solutions, And finally, probabilistic techniques have
proven their value in practice. They are at the core of dozens of successful robotic systems to date.

This article was necessarily brief, and the interested reader is invited to consult the rich literature on this
topic. Additional introductory material can be found at the author’s Web site ht t p: / / www. ¢s. cmu. edu/ ~t hr un.
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