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This paperdescribesa mobile robotic assistantdevelopedto assistelderly individuals with mild cognitive and physical
impairmentsaswell assupportnursesn their daily actiities. We presenthreesoftwaremodulesrelevantto ensuresuccessful
human-robotnteraction: an automatedemindersystem;a people-trackingand detectionsystem;and nally a high-level
robotcontrollerwhich performsplanningunderuncertaintyby incorporatingknovledgefrom low-level modules andselecting
appropriatecoursef actions.During the courseof experimentsconductedn anassistediving facility, therobotsuccessfully
demonstratethatit couldautonomouslyrovide remindersandguidancefor elderlyresidents.

1. Intr oduction

The US populationis agingat analarmingrate. At
present,12.5%of the US populationis of age65 or
older(30). It is widely recognizedhatthis ratio will
increaseas the baby-boomeigenerationmoves into
retirementage. Meanwhile,the nationfacesa sig-
ni cant shortageof nursingprofessionals.The Fed-
erationof Nursesand Health CareProfessionalfias
projecteda needfor 450,000additionalnursesby the
year2008.

This acuteneedprovides signi cant opportunities
for roboticistsand Al researcherso develop assis-
tive technologythatcanimprove the quality of life of
our aging population,and help nursesbecomemore
effective in their actiities. The NursebotProject
was conceved in responseto this challenge. It is
formedby a multi-disciplinaryteamof investigators
from the elds of health-care HCl/psychology and
Al/robotics. The overall goal of the projectis to de-
velop mobile robotic assistantshat canassistnurses
andelderlypeoplein their daily actiities.

To this aim, the team has developedtwo pro-
totype autonomousmobile robots, shavn in Fig-
urel (22). Theserobotsprimarily interactwith the
world throughspeechyisual displays,facial expres-
sionsand physicalmotion. They differ from earlier
workplacerobotsin thatthey gobeyondsimplyinter-
actingwith an (often static)environment,to interact-
ing with humanusersandbystandersThuswe lever-
ageearliertechnologyfor navigation,localizationand
mapping,and speci cally focus on developing new

algorithmicapproacheso track people,predicttheir
behavior, andreactappropriately

From the mary servicesa nursing-assistamobot
couldprovide (11; 18), thework reportedherecon-
sidersthe task of reminding people of events and
guiding them through their ernvironments. Both of
thesetasksare particularly relevant with the elderly
community Decreaseanemoryis a commoneffect
of age-relatedcognitive decline, which often leads
to forgetfulnessabout routine daily actvities (e.g.
taking medications,attendingappointmentsgating,
drinking, bathing,toileting) thusthe needfor a robot
that canoffer cognitive reminders.In addition,nurs-
ing staf in assistediving facilitiesfrequentlyneecdto
escortelderly peoplewalking, eitherto get exercise,
orto attendmeals appointmentsr socialevents.The
factthatmary elderly peoplemove at extremelyslow
speedge.g. 5 cm/sec)makes this one of the most
laborintensie tasksin assistediving facilities. It is
alsoimportantto note that the help provided is of-
ten not strictly of a physicalnature,asmary elderly
peopleselectwalking aidsover physicalassistancey
nurses. Rather nursesoften provide importantcog-
nitive help, in the form of reminders,guidanceand
motivation,in additionto valuablesocialinteraction.

FromanAl pointof view, severalfactorsmale this
taska challengingonefor a robotto accomplishsuc-
cessfully Many elderlyhave dif culty understanding
therobot's synthesizedpeechaswell asarticulating
anappropriateesponsén acomputerunderstandable
way. In addition,walking abilitiesvary drasticallybe-



Figurel. Nursebotd-lo (left) andPearl(right)

tweenindividuals. Peoplewith walking aidsareusu-
ally an orderof magnitudeslower than peoplewith-
out, and people often stop to chat or catch breath
alongtheway. It is thereforemperative thattherobot
adaptto individuals—araspecbf interactionthathas
beenpoorly exploredin Al androbotics.

The work presentedn this paperseeksto address
thesechallengesfocusingon threesoftware compo-
nentsmost pertinentto human-robotinteraction: an
automatedemindersystemthatincorporatesknowl-
edgeof a personstypical schedulewnith obsenations
of recentactvities, and issuespertinentreminders
aboutupcomingevents;amodulewhich usesef cient
particle lter techniquego detectandtrack people;
and nally a high-level robot controller which uses
probabilistic reasoningtechniquesto arbitrate be-
tweeninformation-gatheringndperformance-related
actions,aswell asincorporateinformation obtained
through both navigation sensors(e.g. laserrange-
nder) andinteractionsensorge.g. speechrecogni-
tion andtouchscreen).

In systematicexperimentsconductedat a nursing
home, we found the combinationof techniquesto
be highly effective in dealingwith elderly test sub-
jects.In particular duringa sequencef one-one-one
scenariobetweenPearlandresidentsof the nursing
home,the robotdemonstratethe ability to contacta
residentyemindthemof anappointmentaccompam
themto thatappointmentaswell asprovideinforma-
tion of interestto that person,for exampleweather
reportsor television schedules.

2. Hardware and Software Description

Figurel showvs imagesof therobotsFlo ( rst pro-
totype, now retired) and Pearl (the presentrobot).
Eachrobotis equippedwith a differentialdrive sys-
tem, two on-boardPCs,wirelessethernet|aserrange

nders, sonarsensorsmicrophonegor speectrecog-
nition, spealersfor speechsynthesistouch-sensitie
graphicaldisplays, actuatedhead units, and stereo
camerasystems As a resultof feedbackrom nurses
andmedicalexpertsfollowing deploymentof the rst
robot,Flo, thesecondobotPearlalsofeaturesanim-
proved visual appearancewo sturdy handle-barsa
morecompactdesignthatallows for cago spaceand
aremovabletray, doubledbatterycapacity a second
laserrange nder, anda signi cantly more sophisti-
catedheadunit.

On the software side, both robotsfeatureoff-the-
shelfautonomousnobile robotnavigation system(4;
28), speechrecognitionsoftware(24), speechsynthe-
sis software (3), fastimagecaptureandcompression
software for online video streaming,face detection
trackingsoftware(25), aswell asthethreemajornew
softwaremodulesdescribedn this paper Thesemod-
ulesareprincipally concernedvith peopleinteraction
andcontrol. They overcomamportantde cienciesof
the work describedby (4; 28), which hadonly rudi-
mentaryabilitiesto interactwith people.

3. Plan managementwith Autominder

The Autominder software components designed
asanintelligentcognitive orthotic system providing
elderly peoplewith remindersabouttheir daily activ-
ities (23). Theideaof usingcomputertechnologyto
enhanceheperformancef cognitively disabledpeo-
ple datesbacknearlyforty years(12). More recently
cognitive orthoticshave enabledremindergo be pro-
videdusingthetelephong13), personabigital assis-
tants(10), andpagerq15). Work hasalsobeendone
on improved modelling of users'actuities (17; 20),
wherein one casea hand-deice usesAl planning
technologyto modelthe users plans,andprovide vi-
sualandaudiblecuesaboutits execution.

In the Nursebotproject, the goal of this software
systemis to make principleddecisionsaboutwhatre-
mindersto issueandwhen, balancingthe following
potentially competingobjectives: (i) ensurethatthe
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useris awareof actities s/heis expectedo perform,
(i) increasethe likelihoodthat s/hewill performat
leastthe requiredactiities (e.g. taking medicine),
(i) avoid anng/ing the user and(iv) avoid making
the useroverly relianton the system.To attainthese
goals,the systemmustbe e xible and adaptie, re-
spondingo theactionstakenby theuser

The Autominderarchitecturas shavn in gure 2.
As depictedthe systemmaintainsan accuratemodel
of a users daily schedule monitorsperformanceof
actiities,andplansremindersaccordingly Thethree
main componentare: a Plan Manager(PM), which
storesthe users plan of daily actiities in the Client
Plan, and is responsiblefor updatingit and iden-
tifying ary potentialcon icts in it; a Client Mod-
eler (CM), which usesinformation aboutthe users
obsenable actvities to track the execution of the
plan, storingits beliefsaboutthe executionstatusin
the Client Model anda PersonalCognitive Orthotic
(PCO),which reasonsaboutary disparitiesbetween
whattheuseris supposedb doandwhats/heis doing,
andmakesdecisionsaboutwhento issuereminders.

Toinitialize thesystemthecaragiverfor anelderly
userinputsa descriptionof the users daily actities,
aswell asary constraintson, or preferencesegard-
ing, the time or mannerof their performance.This
plan may then be changedn one of four ways: (i)
the useror caragyiver may add new actiities; (ii) the
useror cargjiver may modify or deleteactities al-

readyin the plan; (iii) the usermay executeone of

the plannedactvities; or (iv) the simple passagef

time may causeautomaticchangego be madein the
plan. Wheneer a changeoccurs,the PM updates
theuserplan,performingplanmemgingandconstraint
propagatioras needed.To adequatelyepresentiser
plans, it essentialto supporta rich setof temporal
constraints;we achieve this goal by modelling user
plansasDisjunctive TemporalProblems(DTPs)and
reasoningaboutthemusingef cient algorithms(29).

Throughoutheday, sensoinformationis gathered
by the robotandsentto the CM, which usesthis in-
formationto try to infer what actvities the useris
performing. If the likelihoodis high thata planned
actiity has beenexecuted,the CM reportsthis to
the PM, which can then updatethe users plan by
recordingthe time of execution,and propagateary
affectedconstraintsaccordingly The usermodelis
representedsinga Quantitatve TemporalBayesNet
(QTBN), which was developedto handlethe need
both to reasonabout uents and aboutprobabilistic
temporalconstraintg5).

The nal componentof the Autominder is the
PCO (21), which usesboth the user plan and the
usermodel to determinewhat remindersshould be
issuedandwhen. The PCOidenti es actvities that
may requireremindersbasedn theirimportanceand
their likelihood of being executedon time as mod-
eledin the CM. It also determineghe most effec-
tive timesto issueeachrequiredreminder taking ac-
countof the expecteduserbehaior, andary prefer
encesexplicitly provided by the userand the care-
giver. Finally, the PCO providesjusti cations asto
why particular activities warranta reminder The
PCO treatsthe generationof a reminderplan as a
satis cing problemandusesa local-searctapproach
called Planning-by-Reriting (PbR) (1) to produce
a high-quality reminderplan that takes into account
the users expectedbehaior, preferencesandinter-
actionsamongsplannedactuities.

4. Locating People

In orderto issueremindersand, when appropri-
ate, guide usersto their actvities, it is necessaryo
interactwith peoplespatially and most speci cally
to be able to locate peoplein their living erviron-
ment. The problemof locating peopleis the prob-
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Figure 3. (a)-(d) Evolution of the conditionalparticle Iter from global uncertaintyto successfulocalization
andtracking. (d) Thetracker continuego track a personeven asthatpersonis occludedrepeatedlyby a second

individual.

lem of determiningtheir - -locationrelative to the
robot. Previous approachedo people tracking in

roboticsarefeature-basedthey analyzesensomea-
surementgimages,rangescans)or the presenceof

featureq14; 26) asthe basisof tracking.In our case,
the diversity of the ernvironmentmandates differ-

entapproach.Pearldetectspeopleusing mapdiffer-

encing: the robot learnsa map, and peopleare de-
tectedby signi cant deviationsfrom the map. Fig-

ure 3 shavs anexamplemapacquiredusingpreeist-

ing software(28).

Mathematicallytheproblemof peopletrackingis a
combinedposteriorestimatiorproblemandmodelse-
lectionproblem.Let  bethenumberof peoplenear
therobot. The posterioroverthe peoples positionsis
givenby

@
where with is the locationof a per
sonattime , thesequencef all sensormeasure-
ments, thesequencef all robotcontrols,and is
theenvironmentmap. However, to usemapdifferenc-
ing, therobothasto know its own location. Theloca-
tion andtotalnumberof nearbypeopledetectedy the
robotis clearly dependenbn the robot's estimateof
its own locationandheadingdirection. Hence,Pearl
estimates posteriorof thetype:

@
where  denotesthe sequenceof robot poses(the
path) up to time . |If was known, estimat-
ing this posteriorwould be a high-dimensionales-
timation problem, with compleity cubicin  for

Kalman lters (2), or exponentialin  with particle
Iters (8). Neitherof theseapproachess, thus, ap-
plicable: Kalman lters cannotglobally localize the
robot, and particle Iters would be computationally
prohibitive.

Luckily, undermildly restrictve conditions (dis-
cussedbelow) the posterior(2) canbe factoredinto

conditionallyindependengstimates:

®3)

This factorizationopensthe door for a particle Iter
thatscaledinearlyin . Ourapproachs similar (but
notidentical)to the Rao-Blackwellizecparticle Iter
describedn (9). First,therobotpath is estimated
using a particle Iter, asin the Monte Carlo local-
ization (MCL) algorithm for mobile robot localiza-
tion (6). Eachparticlein this lter is associateavith
asetof particle lters, eachrepresentingpne of
thepeoplepositionestimates . These
conditional particle Iters representpeopleposition
estimategonditionedonrobotpathestimates—hence
capturing the inherent dependenceof people and
robot location estimates. The data associationbe-
tweenmeasurementand peopleis doneusing max-
imum likelihood,asin (2). Underthe (false)assump-
tion thatthis maximumlik elihoodestimatoiis always
correct,ourapproacttanbeshowvn to corvergeto the
correctposterior andit doessowith updatetime lin-
earin . In practice we foundthatthe dataassocia-
tion is correctin the vastmajority of situations.The
nestedparticle Iter formulationhasa secondaryad-



vantagethat the numberof people canbe made
dependenon individual robotpathparticles.Our ap-
proachfor estimating usestheclassicalAIC crite-
rion for modelselection,with a prior thatimposesa
complity penaltyexponentialin

Figure3 shavsresultsof the Iter in action.In Fig-
ure3a,therobotis globally uncertainandthenumber
and location of the correspondingpeople estimates
varies drastically As the robot reducesits uncer
tainty, the numberof modesin the robot poseposte-
rior quickly becomesnite, andeachsuchmodehasa
distinctsetof peopleestimatesasshovnin Figure3b.
Finally, astherobotis localized,sois the person(Fig-
ure 3c). Whenguiding people,the localizationesti-
mateof thepersons usedto determinghevelocity of
therobot, so that the robot maintainsroughly a con-
stantdistanceto the person. In our experimentsin
thetargetfacility, we foundtheadaptve velocity con-
trol to beabsolutelyessentiafor therobot's ability to
copewith the hugerangeof walking pacesfoundin
the elderly population.Initial experimentswith x ed
velocity led almostalwaysto frustrationon the peo-
ple'sside,in thatthe robotwaseithertoo slow or too
fast.

Finally, Figure 3d illustratesthe robustnesof the
Iter to interferingpeople.Hereanothemersonsteps
betweenthe robot and its target subject. The I-
ter obtainsits robustnesgo occlusionfrom a care-
fully craftedprobabilisticmodel of peoples motion

. This enableghe conditionalparticle

Iters to maintaintight estimatesvhile the occlusion
takes place, as shavn in Figure 3d. During in-lab
experimentsinvolving 31 tracking instanceswith up
to ve peopleat atime, the errorin determiningthe
numberof peoplewas 9.6%. The errorin the robot
position was cm, and the peopleposition
error was as low as cm, when compared
to measurementsbtainedwith a carefully calibrated
staticsensomwith cmerror.

5. High Level Robot Control and Dialog Manage-
ment

The most centralmodulein Pearls softwareis a
probabilisticalgorithmfor high-level control and di-
alog management.This module integratesobsena-
tionsfrom lower-level modules(e.g.the Autominder
the peopletracker, the speechrecognizer etc.) and

usesthis informationto selectappropriatebehaiors
andresponses.

Pearls high-level control architectureis a hierar
chical variantof a partially obsenable Markov deci-
sionproces§{POMDP)(16). The POMDPis amodel
for calculatingoptimal control actionsunderuncer
tainty. Thecontroldecisionis basednaprobabilistic
belief over possiblestates.

In Pearls case,this distribution is de ned over a
collectionof multi-valuedstatevariables:

robotlocation(discreteapproximation)
personslocation(discreteapproximation)
persons status (inferred from speechrecog-
nizer)

motiongoal (whereto move)

remindergoal (whatto inform the userof)
userinitiatedgoal(e.g.,aninformationrequest)

The value of the person's location variableis ob-
sened throughthe peopletracker, and similarly the
remindergoal variableis setby the Automindermod-
ule. Overall, thereare516 possiblestates.Theinput
to the POMDP s a factoredprobability distribution
over thesestatesgeneratedy a stateestimatoysuch
asin Equation(2). Uncertaintyover the currentstate
arisespredominantlyfrom the localization modules
andthe speechrecognitionsystem.The consideration
of uncertaintyis especiallyimportantin this domain,
asthecostsof giving areminderto thewrongperson,
or unnecessarilgendingthe robot to a location can
belarge.

Unfortunately POMDPsof the size encountered
here are an order of magnitudelarger than today's
bestexactPOMDPalgorithmscantackle (16). How-
ever, Pearls domainis highly structured,since cer
tain actionsare only applicablein certainsituations.
To exploit this structure we developeda hierarchical
versionof POMDPswhich breaksdown thedecision
makingprobleminto a collectionof smallerproblems
that canbe solved moreef ciently. Our approachs
similar to the MAX-Q decompositiorfor MDPs (7),
but de ned over POMDPs (where statesare unob-
sened).

The basicidea of the hierarchicalPOMDP is to
partition the action space—nothe statespace since
thestateis not fully obsenable—intosmallerchunks.
For Pearls guidancetask the action hierarchy is
shavn in Figure4, whereabstract actions(shovn in



Act

Remind Assist

> RemindPhysio
> PublishStatus

> VerifyBring
> VerifyRelease

Recharge
GotoHome

.
Contact Move
| Contact] ( Move|

t RingBell BringtoPhysio
GotoRoom CheckUserPresent

DeliverUser

SayTime
SayWeather
VerifyRequest

Figure4. Dialog ProblemAction Hierarchy

circles)areintroducedto subsumedogical subgroups
of lower-level actions.Thisactionhierarchyinducesa
decompositiorof the control problem,whereat each
nodeall lower-level actions,if any, areconsideredn
the context of a local sub-controller At the lowest
level, the control problemis a regular POMDR with
areducedactionspace.At higherlevels, the control
problemis alsoa POMDR yet involvesa mixture of
physicalandabstractactions(whereabstractactions
correspondo lower level POMDPs.)

It is importantto notice that sucha decomposi-
tion is especiallyappropriatewhenthe optimal con-
trol transgressedown alonga single pathin the hi-
erarchyto receve its reward. This is approximately
thecasean thePearldomain,wheregoalsaresatis ed
uponsuccessfullydeliveringapersonpr successfully
gatheringnformationthroughcommunication.

Using the hierarchicalPOMDR the high-level de-
cision making problemin Pearlis tractable,and a
nearoptimal controlpolicy canbe computedoff-line.
Thus, during execution time the controller simply
monitorsthe state(calculateghe posterior)andlooks
uptheappropriatecontrol. Table1 shovs anexample
dialog betweenrthe robotanda testsubject. Because
of theuncertaintynanagemerin POMDPs therobot
choosedo aska clari cation questionat threeocca-
sions. The numberof suchquestiongdependn the
clarity of apersonsspeechasdetectedy the Sphinx
speechrecognitionsystem.

An importantremainingguestionconcerngheim-
portanceof handlinguncertaintyin high-level con-

Obsenation True State Action Reward
pearlhello requestbegun sayhello 100
pearlwhatis like startmeds askrepeat -100
pearlwhattimeis it

for will the wanttime saytime 100
pearlwason abc wanttv askwhich_station -1
pearlwason abc wantabc say.abc 100
pearlwhatisonnbc ~ wantnbc con rm _channelnbc -1
pearlyes wantnbc say.nbc 100

pearlgoto thethat
prettygoodwhat sendrobot askrobotwhere -1
pearlthatthathellobe sendrobotbedroomcon rm _robotplace -1

pearlthebedroomary i sendrobotbedroomgo_to_bedroom 100

pearlgoit eightahello sendrobot askrobotwhere -1

pearlthekitchenhello sendrobotkitchen go_to_kitchen 100
Tablel

Sampledialog demonstratinghe role of clari cation
actions.Actionsin bold font areclari cation actions,
choserby the POMDPbecause@f high uncertaintyin
the speectsignal.

trol. To investigatethis, we ran a seriesof compar
ative experimentsall involving real datacollectedin
ourlab. In oneseriesof experimentsye investigated
theimportanceof consideringhe uncertaintyarising
from the speechinterface. In particular we com-
paredPearls performanceto a systemthat ignores
thatuncertaintybutis otherwisddentical. Theresult-
ing approachs an MDP, similar to the onedescribed
in (27). Figure 5 shaws resultsfor three different
performancaneasuresand threedifferent users(in
decreasin@rderof speechrecognitionperformance).
For poorspealers,theMDP requiredesstimeto “sat-
isfy” a requestdue to the lack of clari cation ques-
tions (Figure 5a). However, its error rate is much
higher(Figure5b), which negatively affectsthe over
all reward receved by the robot (Figure 5¢). These
resultsclearly demonstratéheimportanceof consid-
ering uncertaintyat the highestrobot control level,
speci cally with poorspeectrecognition.

In the secondseriesof experiments,we investi-
gatedthe importanceof uncertaintymanagemenin
the context of highly imbalancedcostsandrewards.
For example, in Pearls case,askinga clari cation
questionis in factmuchcheapethanaccidentallyde-
livering a personto a wrong location, or guiding a
personwho doesnot wantto be walked. We there-
fore comparecperformanceisingtwo POMDPmod-
els which differed only in their cost models. One
modelassumediniform costsfor all actionswhereas
thesecondnodelassume@ morediscriminative cost
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Figure5. Empirical comparisorbetweerPOMDPs(with uncertaintyshavn in gray) andMDPs (no uncertainty
shawvn in black)for high-level robotcontrol, evaluatedon datacollectedin the assistediving facility. Shavn are
theaveragdimeto taskcompletion(a), theaveragenumberof errors(b), andtheaverageuserassigneqnotmodel
assignedyeward (c), for the MDP andPOMDP The datais shavn for threeuserswith good,averageandpoor

speechrecognition.

modelin whichthecostof verbalquestionsvaslower
thanthecostof performingthewrongmotionactions.
A POMDPpolicy waslearnedfor eachof thesemod-
els, andthentestedexperimentallyin our laboratory
The resultspresentedn gure 6 shaw thatthe non-
uniform model makes more judicious useof con r-
mationactions,thusleadingto a signi cantly lower
error rate, especiallyfor userswith low recognition
accurag.

6. Results

Following integration of the three software mod-
ulesontoPearl therobotwasdeployedin aretirement
communitylocatednearPittsturgh, PA. This section
describesxperimentsinvolving elderly residentsof
this facility, with mild cognitive, perceptualpr phys-
ical limitations.

We testedthe robot in  ve separateexperiments,
eachlastingonefull day. The rst threedaysfocused
onopen-endethteractionswvith alargenumberof el-
derlyusersduringwhichtherobotinteractedrerbally
andspatiallywith elderlypeoplewith thespeci c task
of deliveredsweets. This allowed us to gaugepeo-
ple'sinitial reactiongo therobot.

Following this, we performedtwo daysof formal
experimentgiuringwhichtherobotautonomousijed
12 full guidancesjnvolving 6 differentelderly peo-
ple. Figure7 shavs anexampleguidancesxperiment,

User Data -- Error Performance

Non-uniform cost modes
Uniform cost mod et
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Figure6. Empiricalcomparisorbetweeruniformand
non-uniformcostmodels.Resultsareanaverageover
10 tasks. Depictedare 3 exampleusers,with vary-
ing levels of speechrecognitionaccurag. Users2
& 3 hadthe lowestrecognitionaccurag, and con-
sequentlymore errorswhen using the uniform cost
model.

involving an elderly personwho usesa walking aid.
The sequencef imagesillustratesthe major stages
of a successfutielivery: from contactingthe person,
delivering the reminder walking her throughthe fa-
cility, and providing information after the successful
delivery—inthis caseon theweather

In all trials, the taskwasperformedto completion.
Post-a&perimentaldebrie ngs illustrated a uniform
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Figure7. Exampleof a successfubuidanceexperi-

ment: a) Pearlpicks up the patientoutsideherroom,

b) remindsher of a physiotherap appointment,c)

guidesthe personto the physiotherap department,
d) entersthe departmente) satis esarequestor the

weatherreport,andf) terminateghe interactionand

leaves.

high level of excitementon the side of the elderly.
Overall, only a few problemswere detectedduring
the operation.Noneof thetestsubjectsshoveddif -
cultiesunderstandinthemajorfunctionsof therobot.
They all wereableto operatetherobotafterlessthan
ve minutesof introduction. Earlier trials with a
poorly adjustedspeechrecognitionsystemand x ed-
velocity robotmotion,bothcausedlif culties. These
wereaddressee@arly on by increasingherole of the
touchscreemndincludingadaptableselocities.

7. Discussion

This paperdescribech mobile roboticassistanfor
nursesand elderly residentsn assistediving facili-
ties. Thesystemhasheenestedsuccessfullyn exper
imentsin anassistediving facility. The experiments
were successfuln two main dimensions.First, they
provided someevidencetowardsthe feasibility of us-
ing autonomousnobile robotsasassistant$o nurses
and institutionalizedelderly Second,they demon-
stratedthat various probabilistic tracking and plan-
ningtechniguesrewell-suitedto solve problemsper
tainingto human-robotnteractions.

One of the key lessonslearnedwhile developing
thisrobotis thatthe elderly populationrequirestech-
niguesthatcancopewith individual differenceqe.g.
walking speed),age-relateddecline (e.g. memory
loss) and noisy perception(e.g. poor speechrecog-
nition). We view the areaof assistve technologyasa
primesourcefor greatAl problemsn thefuture.
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