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Abstract— We present a robotic walking aid capable of learning
models of users’ walking-related activities. Our walker is instrumented
to provide guidance to elderly people when navigating their environ-
ments; however, such guidance is difficult to provide without knowing
what activity a person is engaged in (e.g., where a person wants to go).
The main contribution of this paper is an algorithm for learning mod-
els of users of the walker. These models are defined at multiple levels
of abstractions, and learned from actual usage data using statistical
techniques. We demonstrate that our approach succeeds in determin-
ing the specific activity in which a user engages when using the walker.
One of our proto-type walkers was tested in an assisted living facility
near Pittsburgh, PA; a more recent model was extensively evaluated in
a university environment.

I. INTRODUCTION

We present a robotic walker for elderly people designed
to provide guidance to people who are cognitively or men-
tally frail and otherwise in danger of getting lost. To as-
sist such people in their daily walking-related activities, it is
beneficial for the walker to acquire a model of people’s daily
routines. Our walker does just this: by passively monitoring
people’s walking activities, it develops a hierarchical model
of people’s daily walking routines.

Our walkers extend commercial walking aids, as shown in
Figure 1. Both proto-types are equipped with a laser-based
navigation system for localization relative to a learned envi-
ronment map, a display for providing directions to its users,
a touch-based interface for receiving commands, and an ac-
tive drive mechanism equipped with a clutch for switching
between active and passive mode. The guidance provided
by the walker is similar to car-based GPS systems, in that
it informs individual users where to go when attempting to
navigate to a target destination [10].

A key ability of our walker is that it learns models of peo-
ple’s motion behaviors. These models are acquired when
the device is used with and without providing guidance. The
model is defined at multiple levels of abstraction: It includes
a representation of principled activities, topological loca-
tions through which a person may navigate, and low-level
metric locations. A hierarchical hybrid semi Markov model
ties together these multiple models into a single coherent
mathematical framework. The parameters of the model are
learned in a separate teach-in phase, in which a person labels
specific activities (e.g., a caregiver). When used for every-
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Fig.1. Tworoboticwalkersdevelopedontop of acommercialvalkingaid.
Both walkersprovide navigationalguidanceandcan, thougha clutch,
becontrolledsoasto parkthemseles.

day navigational assistance, our learned model is capable
of identifying individual walking-related activities with high
reliability. We conjecture that the ability to learn such mod-
els and recognize individual activities just from the way it
is used is an essential precondition to build truly effective
robotic walking aids for the elderly.

Experimental results illustrate that a highly accurate model
is learned after only a few days of using the walker. In par-
ticular, we have found 100% accuracy in classification of
activities when tested on independently collected data—for
the duration of an entire testing day.

I1. PRIOR WORK

The idea of building robotic walking aids is not new. Most
existing robotic devices are active aids—meaning that they
share control over motion with the user—and are aimed at
obstacle avoidance and path navigation. There exist a num-
ber of wheelchair systems [14], [17], [19], [23] as well as
several walker- and cane-based devices [5], [13], [9], [21]
targeted at blind and elderly people. A technology with
some similarities to ours is the walker-based Guido sys-
tem. Guido evolved from Lacey and MacNamara’s PAM-



AID, and was designed to facilitate independent exercise
for the visually impaired elderly. It provides power-assisted
wall or corridor following [9]. Dubowksy et al’s PAMM
(Personal Aid for Mobility and Monitoring, distinct from
PAM-AID) project focuses on health monitoring and navi-
gation for users in an eldercare facility, and most recently
has adopted a custom-made holonomic walker frame as its
physical form [6], [25]. Wasson and Gunderson’s walk-
ers rely on the user’s motive force to propel their devices
and steer the front wheel to avoid immediate obstacles [30],
[29]. A similar device by Morris et al [21] also provides
guidance and force feedback through a haptic interface. All
four of these walkers are designed to exert some corrective
motor-driven force, although passive modes are available.
Our overall approach is similar to [6], [10], [25] in physical
shape and appearance, in that it is based on a light-weight
off-the-shelf walker frame. The ability to provide guidance
is similar in functionality to the one [10], [21]. However,
none of these systems learns and analyzes the motion of
its users. This paper fills this important gap: our walker
is unique in its ability to learn a user model.

Outside the realm of robotic walkers, the idea of learning
models of people’s motion is not new. Most notably, Ben-
newitz et al [2], [3] have developed techniques for learning
models of people’s motion, as observed from a nearby mo-
bile robot. Others have learned behavioral models of people
from camera images [1], [7], [11]. The activity of discrete
activities is also related to the rich literature of plan recogni-
tion [12]. The work here is related, in that it acquires statisti-
cal models of behavior. However, it applies these techniques
to a new and important domain. Further, our approach inte-
grates learning of behaviors at multiple levels of abstraction,
and it ties these together when analyzing high-level activi-
ties.

The specific mathematical models proposed here are hi-
erarchical and mixed discrete-continuous. Within the realm
of discrete statistical models, a more general class of hier-
archical models were proposed in [22], [8], and learning
algorithms were presented in [27]. The work here places
an instance of this more general mathematical model in the
context of a specific application; further, it extends it by
a continuous component, as previously proposed for non-
hierarchical models in [16].

I1l. LEARNING MODELS OF USERS
A. Hierarchical StateSpace

Our approach models activities at three levels:

1. The metric location of a person operating the walker is
comprised of her z-y-location along with her heading direc-
tion 6. The location vector at time ¢ is denoted «,. Deter-
mining « for an instrumented walker is essentially a metric

Fig. 2. Topologicaldecompositiorof a large foyer ervironmentin the
Longwoodassistediving facility nearPittsturgh, PA..

localization problem, for which a number of effective al-
gorithms exist [4], [15]. In our system, the location «; is
obtained by running the Carmen software package [20].

2. The topologicallocation of a person is determined based
on a manually partitioned environment map into topologi-
cal regions. Regions correspond to rooms, corridors, foy-
ers, and so on. Each of these regions is given a unique
identifier. The topological location at time ¢ is denoted (.
The topological location is a function of the metric location:
B¢ = g(ay). Since we obtain accurate metric coordinates
from our metric localizer, we trivially obtain topological lo-
cations as well. Figure 2 depicts a topological decompo-
sition of the environment. While this decomposition was
specified manually, algorithms exist for finding similar de-
compositions automatically [28].

3. The logical activity in which a person is engaged forms
the most abstract level of our hierarchy. We distinguish two
types of activities: Activities carried out in a single location
(e.g., a person eating lunch), and activities that involves mo-
tion between multiple locations (e.g., walking from the din-
ing hall back to one’s room). Each activity is given a unique
identifier. The logical activity at time ¢ will be denoted ;. In
the training phase, we assume the activity is provided (e.g., a
caregiver manually labels the data sequence). During every-
day operation, the activity is not directly observable; thus,
we need a statistical framework for estimating activity from
sequences of locations.

Clearly, the state at each level changes over time. How-
ever, it does so at vastly different time scales. Changes at the
metric location level occur continuously, and are reported
back at a sample rate of ten Hertz. At the the topological
level, changes occur much less frequently: It may take more
than a minute for frail elderly people to move from one topo-
logical region to another. At the activity level, the change is



even slower: An activity can easily persist for half an hour.

To accommodate these vastly different time scales, our
approach utilizes different time indices for the different lev-
els. At the lowest level, we use the regular fixed time inter-
val provided by the Carmen software; time will be denoted
by t. At the topological level, we will use the time index k.
The variable k is incremented whenever the topological lo-
cation changes. Finally, at the activity level we will use the
time index s. The value of s is incremented whenever the ac-
tivity changes. Both more abstract time indices are variable
and depend on a person’s actions. Markov chains in which
states transition at variable rates are known as semi-Markov
chains [18], [26].

The set B = {fy, t[k]} denotes the sequence of topologi-
cal events; here ¢[k] is the time at which a person’s topolog-
ical location changes. C' = {s, t[s]} shall be the sequence
of activities. Again, t[s] models the time at which such a
change occurs. We note that it is straightforward to extract
the duration of an event. For example, the duration of an
event in B is given by &y = ¢[k + 1] — t[k].

B. TheHierarchical Probabilistic SemiMarkov Model

Our generative probabilistic model—which forms the ba-
sis for the inference of activities from data—is defined through
four conditional probability distributions that characterize
the evolution of state over time. The first two of these distri-
bution operate at the topological time resolution %, whereas
the other two are defined for the activity level time s.

p(B°| 3,~) is the the transition probability between topo-
logical locations, conditioned on the activity . This prob-
abilistic function defines state transitions at the topological
level.

p(d | B,y) is the distribution over durations spent in topo-
logical regions 3, conditioned on the activity v. Here ¢ is a
continuous variable. Notice that this distribution is defined
over a continuous domain.

p(7°| ) measures the transition probability for activities,
modeled at the activity level.

p(f(t[s]) | ) is a time-of-day distribution for activities:
It measures the time of day at which an activity v may be
initiated. Here f(¢[s]) is a function that extracts the time-of-
day from a time stamp ¢ by removing the date information.
For example, f(“11:45:22 on 7/12/2003") =*“11:45:22".

Under this model, the probability of the data sequences B, C'
is then given by the following product:

p(B,C) = P(Br | B 1,7 1) POk | Brs Vi)

k
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Clearly, the probabilistic model has been designed carefully
S0 as to model the essentials of activities of elderly people
using our walker. For example, our model ignores the spe-
cific metric trajectory defined by the variables «; those are
only used to calculate the topological region 3. The reason
for being oblivious to the specific trajectory is its depen-
dence on a great number of factors, such as other people
that might block the way. Our specific choice of temporal
models—the time a person stays at a single topological lo-
cation and the time-of-day an activity is initiated, are highly
informative: The former allows us to identify activities in
which a person stays in the same single topological loca-
tion for extended periods of time (e.g, watching television).
The latter helps us identify activities that occur at regularly
scheduled times, such as eating lunch.

C. LearningTheModel

The first two probabilities are defined over discrete spaces.
Hence, we use a Laplacian estimator for estimating these
transition probabilities:

p(ﬁO\ﬁxv)
IBr=ABr 1=BAv 1=7)+c

= Fx )
IBe 1=0Nwm 1=")+c|f
k.

Here I is the indicator function which is 1 if its argument
is true, and O otherwise. The parameter c is the parame-
ter of a Dirichlet prior: It can be thought of as a “pseudo”-
observation that prevents transition probabilities of zero (a
common technique in the literature on speech recognition).
For ¢ = 0, this expression becomes the standard maximum
likelihood estimator.

Similarly, for the activities v we have
X
I(vs =7\ 1=17) +c
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The remaining probability distributions are defined over con-
tinuous values, but conditioned on discrete variables. Our
approach represents these distributions by conditional Gaus-
sian distributions:

p(18,7y) ~ N(upr.03,) @)
p(fE) |v) ~ N(vy,72) (5)

where N (u, o?) denoted a Gaussian with mean p and vari-
ance o2. The mean and variance are obtained using the stan-



dard estimation equations:

6k L(Be = B Ay =1)

= % (6)
e IBr =B Ny =")

X k
[0k — pp )2 I(Bx = B Ay, =)

2 k
o = X @)
o I(Br =B A% ="7)

and
X
fts) I(vs =)
- X (8)
o 1072 =)
X ° 2
[f(ts) —vy]° I(vs =)
7',3 = 2 X - 9)

These estimators generate the maximum likelihood Gaus-
sians.

D. Inferring Activities

During everyday use, we cannot observe the activities ~.
We are only given the set B of topological transitions, and
the times at which ~ changes (e.g., detected by a person en-
gaging or disengaging from the walker). The problem of in-
ferring the activities v from data is then a semi-HMM, short
for semi hidden Markov model. Inference for this model
can then be carried out using any of the standard HMM in-
ference algorithms, such as the Baum Welch algorithm [24]
and its hierarchical extensions [22].

With our walker, we are interested in inferring the present
activity of a person in real time. This is achieved by the
Bayes filter, an algorithm equivalent to the forward pass in
Baum Welch. The Bayes filter calculates, for any time ¢, the
probability that the person’s activity is +; given the present
and past data. If we denote the data up to time ¢ by BJ0; 1],
we seek to estimate p(y; | B[0;¢]). This expression nicely
decomposes, thanks to our choice of the hierarchical model.
First, we note that if we define sx as the time index of the
most recent activity change, we obtain:

p(ye | J;’([O;t])
= p(e | vs - Bl0t]) p(vs | B[0;¢])
X

p(ve | vs - Bls ;t]) p(vs | Bl0;s ]) (10)

Vs

Here we split the data B into two parts: B[0;s | and B[s ;.

The set B[0; s ] contains all items collected before the time

Initially, setr () = uniform for all actwvities~.

When actvity chgnge detected at time t, use

(%) = pt | 79 ,p(° | Y)7(y) asthe new esti-
mate(afternormalization).

When the topologicallocation changesrom (3 to 3° after
beingin /3 for adurationof 5, multiply 7 () by p(5°| 3, ) -
p(d | B,~) andnormalize.

TABLE |
ALGORITHM FOR CALCULATING POSTERIORS OVER ACTIVITIES .

at which s occurred (this time is denoted ¢[s ]). The re-
maining data, gathered in the time interval from ¢[s ] through
t, is denoted B(s ;t]. The transformation above exploits the
fact that the hidden variable ~ is the only hidden state in
the model—every other state variable is observable. Thus,
~ renders the past and future conditionally independent—
which is the defining property of Markov chains.

In other words, whenever an activity changes, it suffices
to memorize the posterior distribution p(~, | B[0;s]) over
the activity at that time. Data gathered before that activity
change carries no further information relative to the prob-
lem of estimating the current activity. This important char-
acteristic of our approach (and Markov chains in general) is
documented by the fact that (10) is indeed a recursion.

Unfortunately, activities change slowly. However, a sim-
ilar Markov property can be exploited for the estimates be-
tween activity changes.

p(%I%VB[s it]) oo p(f(ts 1) 1)
P(Br | Br — 1,7) p(0k | Br,7)

Bk2 B[s ;t]

(11)

This again lends itself nicely to a recursive implementation:
While no activity change occurs, the posterior probability
of each activity ~ is simply updated in proportion to the
transition probabilities p(8x | B — 1,~) and the duration
probabilities p(dy, | Ok, ).

The resulting algorithm is depicted in Table I. Notice that
it is extremely simple: Whenever a state change is observed,
the corresponding probability is multiplied into the posterior
state estimate. once a posterior estimate of the activity has
been obtained, it is straightforward to calculate the likeli-
hood of the data sequence from Equation (1).

IV. RESULTS

We conducted a number of experiments to evaluate the
ability of our approach to learn good predictive models of
its users. The model learning results were achieved on data
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collected over a four-day period with an individual user (a
student). Figure 4 shows the testing environment, which
covers three different floor levels in two different buildings
connected by a walkway and two elevators. All results in-
volve genuine motion. For learning, the guidance system
was switched off to avoid the obvious bias asserted by the
active guidance system. Within those four days, we col-
lected more than 60,000 position data, from which we de-
rived a total of 213 topological state transitions. The map
was subdivided into 86 locations. It spanned three different
buildings, and within these buildings a total of three differ-
ent floors, which were accessed through three different sets
of elevators. One of the days was withheld from the data to
serve as independent testing data; all other data was used for
training.

We found that our model predicted people’s activity with
100% accuracy, for a total of 61 activities and topological
location changes in the testing data. This result is illustrated
in Figure 3. Shown there is a sequence of 61 probability
distributions over 9 possible activities. Each distribution is
plotted as log-likelihood: the brighter an activity, the more
likely it is. The red line in this diagram depicts ground truth:
clearly, the prediction of activities is remarkably accurate.
This illustrates that the features chosen in our model are
well-suited for modeling user activities.

Components of the learned model are visualized Figures 5
through 7. Figure 5 shows two examples of topological
transition tables for the conditional probability distribution
p(B°]| B3,7). This distribution measures the probability that
a person enters region 5°from 3 in activity . As should be
apparent from this graph, there is a huge diversity of tran-
sition functions. For the activity “at lunch,” the person re-
mains at a single location (the dining hall), whereas for the
activity “returning from lunch” she traverses a number of
regions in mostly fixed order.

Figure 6 shows the transition table between activities, that
is, the learned probability distribution p(7° | ~). Again,
most activities occur in some sort of sequence, though not
all. This remarkably deterministic behavior is a key reason
for the high predictive accuracy of our approach. Finally,

Figure 7 shows the distribution for the time of day at which
an activity is usually carried out. Here we find specific time
dependence for a number of activities. This should come as
little surprise, since certain activities (such as lunch-related
activities) occur at about the same time every day.

Our guidance activities were rather informal, and are mostly
documented in [10]. We essentially tested the walker with
a number of elderly people, who by and large showed ex-
citement for this new concept. An informal lab evaluation
showed that pointing to the next topological region leads to
more intuitive guidance than pointing in the direction of the
final target location. In a previous related system [21], we
found that the guidance can effectively deliver people at lo-
cations that they might otherwise be unable to find.

V. CONCLUSION

We have presented a robotic walker designed to provide
guidance to people, and that is able to learn models of peo-
ple’s walking activities. Our approach to learning this model
is a hierarchical Markov model that operates at three differ-
ent levels: A metric motion level at which location is de-
scribed by metric coordinates, a topological motion level
which uses topological regions as its basic element, and an
activity level, at which a person’s walking activities are log-
ically subdivided into broader categories.

Our model is trained from labeled data. In particular, our
approach learned transition probabilities for the two upper
levels, and duration and time-of-day distributions. Once
learned, it uses Bayesian filtering to determine the specific
activity in which a person engages. We find after only a few
testing days that our system predicts activities with 100%
accuracy on an independent testing day.

While these results are encouraging, more needs to be
done to turn this walker into a profitable guidance system.
Most importantly, we plan to utilize the learned models in
our guidance system, in the hope of providing the right guid-
ance at the right time even if a person fails to specify the
target location. This should now easily be possible, given
our ability to determine the target location (a function of the
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activity). On the mathematical side, we plan to employ tech-
niques that can automatically segment time series, so as to
improve our ability to detect activity change.

Despite these limitations, this paper presents the some-
what surprising result that walking activities can success-
fully be modeled using relatively little training data, and an
appropriately equipped robotic walker.
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