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Summary. An open problem in Simultaneous Localization and Mapping (SLAM)
is the development of algorithms which scale with the size of the environment. A
few promising methods exploit the key insight that representing the posterior in the
canonical form parameterized by a sparse information matrix provides significant
advantages regarding computational efficiency and storage requirements. Because
the information matrix is naturally dense in the case of feature-based SLAM, addi-
tional steps are necessary to achieve sparsity. The delicate issue then becomes one
of performing this sparsification in a manner which is consistent with the original
distribution.

In this paper, we present a SLAM algorithm based in the information form in
which sparseness is preserved while maintaining consistency. We describe an intuitive
approach to controlling the population of the information matrix by essentially ig-
noring a small fraction of proprioceptive measurements whereby we track a modified
version of the posterior. In this manner, the Exactly Sparse Extended Information
Filter (ESEIF) performs exact inference, employing a model which is conservative
relative to the standard distribution. We demonstrate our algorithm both in simula-
tion as well as on two nonlinear datasets, comparing it against the standard EKF as
well as the Sparse Extended Information Filter (SEIF) by Thrun et al. The results
convincingly show that our method yields conservative estimates for the robot pose
and map which are nearly identical to those of the EKF in comparison to the SEIF
formulation which results in overconfident error bounds.
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1 Introduction

A skill which plays an integral role in achieving robot autonomy is the ability
to operate in a priori unknown environments. Viewed as a coupled problem of
simultaneously performing localization and mapping, SLAM is further com-
plicated by the stochastic nature of vehicle motion and observations. Most
effective SLAM algorithms address these issues by posing the problem in a
probabilistic framework with the goal then being the estimation of the joint
distribution over the map and vehicle pose.

Beginning with the seminal work of Smith et al. [14], the Extended Kalman
Filter (EKF) SLAM formulation has proven to be particularly popular. In
large part, this is due to its relative simplicity, requiring that one only maintain
the first two moments of the distribution to account for the coupling between
the robot and map. From knowledge of the correlation, the EKF is able to
exploit feature observation data to update the pose and map estimates. At the
same time, this capability comes at the cost of complexity which is quadratic
in the number of state elements. As a result, SLAM algorithms relying upon
an EKF have traditionally been limited to relatively small environments.

Representing the joint Gaussian distribution in the dual canonical form,
recent work has given rise to algorithms capable of scaling with the environ-
ment. Pivotal insights by Thrun et al. [15] and Frese et al. [8] have revealed
that, in the context of SLAM, many of the off-diagonal elements in the in-
verse covariance (information) matrix are inherently near zero. Considering
the graphical model represented by the information matrix [12], the implica-
tion is that a majority of the links in the Markov network are relatively weak.
By essentially breaking these weak links, Frese [7] and Paskin [12] are able to
approximate the graphical model by a sparse tree structure which provides
for scalable SLAM algorithms. Alternatively, the Sparse Extended Informa-
tion Filter (SEIF) by Thrun et al. [15] relies upon a version of the Extended
Information Filter, the dual to the EKF. In the case where the information
matrix is sparse, the authors demonstrate that state estimation can be per-
formed in near-constant time. While a majority of the links in the information
matrix are weak, though, they are nonetheless nonzero. SEIFs then employ a
strategy by which the posterior is approximated with an information matrix
having the desired sparse structure. The algorithm has efficiently been applied
to large, real-world datasets with a priori unknown data association [10].

Together with the intuitive characteristics of the canonical representation
noted in [15], the success of SEIFs has brought a lot of attention to the
information filter formulation of the SLAM problem. The one issue which
has, up to now, largely gone unnoticed is the implication of approximating the
posterior to achieve the necessary sparseness. A close look at the sparsification
strategy reveals that the resulting posterior is prone to overconfidence. In [5],
the authors show that, while the state estimates are only slightly overconfident
when expressed in a local reference frame, they suffer from an exaggerated
global inconsistency. The paper presents a modified sparsification rule which
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yields a posterior which is both locally and globally consistent relative to the
full Kalman solution but is no longer computationally tractable.

Our objective in this paper is to present an information-based formulation
to the SLAM problem which achieves exact sparseness while being computa-
tionally efficient. Rather than relying upon an approximation to remove links
from the information matrix, the algorithm adopts a new strategy which ac-
tively controls the population of the matrix by relocalizing the robot within
the map. The filter then maintains an estimate of the state which is both
globally and locally conservative relative to the full Kalman solution. We
demonstrate the algorithm alongside the EKF and SEIF on a linear Gaussian
simulation as well as two real-world experiments, including a benchmark non-
linear dataset. The results reveal that while the SEIF is globally inconsistent,
our algorithm yields estimates nearly identical to those of the EKF which are
globally and locally conservative.

2 Information Filter

2.1 Canonical Form

Let ξt be a random vector having a Gaussian probability density, ξt ∼
N

(
ξt;µt,Σt

)
described completely by its mean, µt, and covariance matrix,

Σt. An expansion of the exponential term defining the multivariate normal
distribution, p(ξt) ∝ exp

{
− 1

2 (ξt − µt)
�Σ−1

t (ξt − µt)
}
, yields an equivalent

representation for the probability density function, N−1
(
ξt;ηt,Λt

)
, parame-

terized by the information vector and information matrix, ηt and Λt, respec-
tively.

Λt = Σ−1
t ηt = Σ−1

t µt (1)

The canonical representation for the multivariate Gaussian is the dual of the
standard form in the sense of the fundamental processes of marginalization
and conditioning, as exemplified in Table 1. While marginalization is hard in
the information form, requiring a matrix inversion, it is easy in the covariance
form. The opposite is true in regards to the conditioning operation. Further
details regarding this duality in the context of filtering can be found in [11].

One quality of the canonical form is its relationship with Gaussian Markov
random fields in which nodes in the graph represent individual state variables
and edge structure describes their conditional independence relationships. The
information matrix effectively serves as an adjacency matrix for the graph
[12], with the strength of constraints between pairs of variables proportional
to the corresponding elements of the matrix. Off-diagonal components which
are zero then denote the absence of links in the Markov network. Thus, the
information matrix has the particular advantage of explicitly representing the
conditional independence of state variables.



4 Matthew Walter et al.

Table 1. Summary of Marginalization and Conditioning Operations on a Gaussian
Distribution Expressed in Covariance and Information Form

p (α, β) = N
([ µα

µβ

]
,
[

Σαα Σαβ

Σβα Σββ

])
= N−1

([ ηα
ηβ

]
,
[

Λαα Λαβ

Λβα Λββ

])

Marginalization Conditioning

p (α) =
∫

p (α, β) dβ p (α | β) = p (α, β) /p (β)

Covariance
Form

µ = µα µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ = Σαα Σ′ = Σαα − ΣαβΣ−1
ββΣβα

Information
Form

η = ηα − ΛαβΛ−1
ββ ηβ η′ = ηα − Λαββ

Λ = Λαα − ΛαβΛ−1
ββΛβα Λ′ = Λαα

2.2 Feature-based SLAM

The goal of any SLAM algorithm is to concurrently perform navigation and
map-building in the presence of uncertainty in vehicle motion and environmen-
tal observations. With feature-based SLAM formulations, the map is described
as a collection of stationary primitives, e.g. lines, points, etc. The robot pose,
xt, together with the set of map elements, M = {m1,m2, . . . ,mn}, are repre-
sented together by the state vector, ξt = [x�

t M�]�. The coupling between the
pose and map is addressed by considering the joint probability distribution
for the state. Adopting a Bayesian framework, a model of the joint poste-
rior is tracked as it evolves as a result of the uncertainty in vehicle motion
and measurement data. Typical SLAM implementations make the assumption
that this uncertainty is a result of independent white Gaussian noise which
corrupts the motion and measurement models. One can then show that the
posterior obeys a Gaussian distribution.

p
(
ξt|zt,ut

)
= N

(
ξt;µt,Σt

)
= N−1

(
ξt;ηt,Λt

)
(2)

The belief function is traditionally represented in the standard form which
can be tracked relatively easily with the EKF. Modifying the posterior to re-
flect the effect of vehicle motion is a constant-time process as it involves a
combined process of state augmentation and marginalization, both of which
are easily performed in the covariance form. On the other hand, it is well
known that incorporating new measurement data requires a conditioning step
which is quadratic in the size of the state. Furthermore, maintaining the cor-
relation among state estimates leads to a dense covariance matrix which must
be stored. For small scale environments, these problems are surmountable, but
as the map size becomes increasingly large, implementing a full EKF quickly
becomes intractable.
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Alternatively, employing the canonical representation of the posterior, the
filtering process reflects the duality between the two forms. Performing mea-
surement updates (conditioning) is constant-time, while the marginalization
component of the projection step, in general, is quadratic in the state di-
mension, at best. Furthermore, recovering the estimate of the mean requires
the O(n3) inversion of the information matrix per (1). As a result of these
limitations, the information filter has had relatively limited use in SLAM.

Recently, Thrun et al. [15] and Frese et al. [8] have made the pivotal ob-
servation that, when normalized, the information matrix tends to be nearly
sparse. The matrix is dominated by a small percentage of terms which are sig-
nificantly larger than the remaining elements. In general, the links between the
robot and the map are stronger for nearby, recently observed features while the
constraints are weak for distant features. The same is true for inter-landmark
terms which tend to decay exponentially with the distance traversed by the
robot between observations [6]. Referring to the graphical interpretation of
the information matrix, these weak links then imply that, given relatively few
features, the robot is nearly conditionally independent of much of the map.

Though many of the terms in the normalized information matrix are very
small, the SLAM process naturally leads to the full population of the matrix.
To get a better understanding of why this is, consider a simple example in
which the map consists of five features. Suppose that the off-diagonal terms in
the information matrix corresponding to the robot, xt, are non-zero for four
of the features and that the remaining landmark, m4, has shared information
with another feature. These links between the robot and the map are created
when features are observed. The graphical model along with the information
matrix are illustrated in the left-hand side of Figure 1(a). The time projection
step can be viewed as an initial augmentation of the state with the new
robot pose, xt+1, which, evolving by a Markov process, is linked only to the
previous pose as indicated in the middle figure. At this point, the information
matrix remains sparse. Subsequently marginalizing out xt, though, creates
links between all states which share constraints with the previous pose. The
result is a fully connected subset of nodes and, correspondingly, a population
of the information matrix. The only remaining zero entries correspond to
the lone feature, m4, which will become linked to the robot upon the next
observation. The time projection step will then lead to a fully connected graph
and, correspondingly, a dense information matrix.

Hence, with online SLAM implementations in which only the current pose
of the robot is estimated, the marginalization of the previous pose in the
projection step naturally results in a dense information matrix. Alternatively,
by retaining an entire trajectory history, exact sparsity can be maintained [3]
at the cost of storage requirements which become significant for large datasets.

Returning to the example pictoralized in Figure 1(a), note that while the
time projection step populates the information matrix, the strength of the off-
diagonal links decays with time. This behavior is the reason why a majority
of the elements in the normalized matrix are very small. The authors show
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in [15, 8, 12] that if the posterior can be represented by an exactly sparse
approximation, it is possible to achieve significant gains when it comes to both
storage and time requirements. In particular, a bound on the number of links
between the robot and the map allows for near constant-time performance of
the time projection step and also controls the fill-in of the information matrix
resulting from marginalization.

3 Exactly Sparse Extended Information Filters

Map elements having shared information with the robot are said to be active.
In feature-based SLAM implementations, a feature becomes active when it
is first observed. With time, the strength of the link with the robot decays
and is strengthened only upon being re-observed. Thus, while the off-diagonal
terms may become arbitrarily small, they will never become zero. In order for
a landmark to become passive (i.e. no shared information), the link with the
robot must explicitly be broken.

3.1 Problem Formulation

In describing the desired sparsity of the information matrix, we adopt the
two measures utilized by Thrun et al. [15]. Denote the maximum allowable
number of active features as Γa and the number of inter-landmark links in
the matrix by Γp. Let us then partition the map into two sets of features,
M = {m+,m−}, where m+ represents the active features for which the off-
diagonal terms for the robot pose are non-zero, and m− denotes the passive
landmarks, having no direct constraint to the vehicle.

Controlling the sparsity of the information matrix is, in large part, a direct
consequence of maintaining the Γa bound. By regulating the number of active
features, it is possible to limit the population of the matrix. Consider, for
example, the situation depicted in the left-hand side of Figure 1(b) in which
four of the five features are active. At this point, if xt were marginalized
out, the four active features in m+ would become fully connected, potentially
violating the Γp bound. Instead, if one of landmarks, m1, were first made
passive, the number of non-zero elements created as a result of marginalization
could be controlled. Thus, enforcing the desired sparsity pattern corresponds
to maintaining a bound on the number of active features. Since features do not
naturally become passive, a sparsification routine which deliberately breaks
the links is necessary.

3.2 SEIF Sparsification

The SEIF breaks a link between the robot and a feature by approximating the
posterior with a distribution in which the robot is conditionally independent of
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Fig. 1. A graphical explanation of SEIF’s methodology for controlling sparsity
in the information matrix. (a) A sequence of illustrations depicting the evolution
of the Markov network and corresponding information matrix resulting from time
projection when viewed as a two-step process of state augmentation followed by
marginalization. Darker shades imply larger magnitudes with white indicating zero
values. From left to right we have: (1) the robot xt connected to four active features,
m1:3 and m5; (2) state augmentation of the time-propagated robot pose xt+1; (3)
marginalized distribution where the old pose, xt, has been eliminated. (b) A sequence
of illustrations highlighting the concept behind sparsification. If feature m1 can first
be made passive by eliminating its link to the old pose, xt, then marginalization over
xt will not link it to the other active features. This implies that we can control fill-in
of the information matrix by bounding the number of currently active features.

the landmark. The map is broken into three disjoint sets, M = {m0,m+,m−},
where m− refers to the passive landmarks which will remain passive and,
in a slight abuse of notation, m+ is the set of active features which will
remain active, and m0 are the active features which will be made passive.
The sparsification routine proceeds from a decomposition of the posterior
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p(xt,m
0,m+,m−) = p(xt | m0,m+,m−) p(m0,m+,m−)

= p(xt | m0,m+,m− = S�
m−µt) p(m0,m+,m−)

(3)

where setting the passive elements to their mean, S�
m−µt, in the last line is

valid due to their conditional independence with respect to the robot. SEIFs
then deactivate the landmarks by replacing (3) with an approximation to the
posterior which drops the dependence upon m0:

p̃SEIF(xt,m
0,m+,m−) = p(xt | m+,m− = S�

m−µt) p(m0,m+,m−) (4)

While the decomposition in (3) is theoretically sound, it is no longer valid
to condition on a particular value for the passive features while simultaneously
ignoring the dependence upon m0. Given only a subset of the active features,
the robot pose is no longer conditionally independent of the passive map.

By enforcing the conditional independence between the robot and the de-
activated features, SEIFs rely upon approximate inference on an approximate
posterior and, as a result, are prone to inconsistency [5]. In particular, the
authors show that sparsifying in this manner leads to a global map which is
significantly overconfident while the local relationships are preserved.

3.3 ESEIF Sparsification

Rather than deliberately breaking constraints with the robot to maintain a
bound on the number of active features, ESEIFs take the approach of essen-
tially controlling the initial formation of links. As soon as a feature is first
observed, it is linked to the current robot pose. As noted earlier, the strength
of this constraint will decay with time but never truly disappear, leading to
a growing number of links between the robot and the map.

Noting the nature of this link formation, ESEIFs control the number of
active features by deliberately marginalizing out the robot pose. The vehicle
is relocated within the map using observations of a few known landmarks.
The new pose is then conditionally independent of the rest of the map, and
the robot is linked only to the features used for relocalization.

For a more detailed description of the ESEIF sparsification strategy, we
consider a situation which would give rise to the representation in Figure 1
which consists of both active and passive features. Suppose that the robot
makes four observations, Zt = {z1, z2, z3, z5}, three being of active features
and one of a passive feature:

z2 = h(xv,m2), m2 ∈ m+ z5 = h(xv,m5), m5 ∈ m+

z1 = h(xv,m1), m1 ∈ m0 z3 = h(xv,m3), m3 ∈ m−

Updating the posterior based upon all four measurements would result in
the strengthening of the off-diagonal entries in the matrix pairing the robot
with the three observed active features. Additionally, a link would be created
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with the currently passive map element, m3, leading to the graph structure
depicted in the left-hand side of Figure 1(a). In the case where this would
lead to a violation of the Γa bound, one strategy would be to disregard the
observation of the passive feature entirely. With ESEIFs, though, it is possible
to incorporate all measurement data while maintaining the desired sparsity
pattern.

In the ESEIF sparsification step, the measurement data is partitioned into
two sets, zα and zβ , where the first set is used for updating the filter and the
second is reserved for performing relocalization. Of the four measurements
available in our example, group that of the passive feature together with one
active measurement as zα = {z1, z3}, leaving zβ = {z2, z5}. To sparsify, we
first apply the update step followed by the combined process of marginaliza-
tion and relocalization.

Posterior Update

A Bayesian update is performed on the joint posterior, p(ξt | zt−1,ut) =
N−1

(
ξt;ηt,Λt

)
based upon the zα measurements:

p(ξt | zt−1,ut)
zα={z1,z3}−−−−−−−→ p1

(
ξt | {zt−1, zα},ut

)

where p1

(
ξt | {zt−1, zα},ut

)
= N−1

(
ξt; η̄, Λ̄

)
follows from the standard up-

date process for the information filter. Note that we can perform this step
in constant-time with, in the nonlinear case, access to the mean estimate for
the robot as well as m1 and m3. The information matrix, Λ̄t, is modified as
depicted in Figure 2 with the strengthening of the constraints between the
vehicle and the active feature, m1 and importantly, the creation of shared
information with the previously passive feature, m3.

Marginalization and Relocalization

The addition of a new constraint between the robot and a map element results
in a violation of, Γa, the bound on the number of active features. The ESEIF
sparsification routine then proceeds by first marginalizing out the vehicle pose

p2

(
Mt | {zt−1, zα},ut

)
=

∫

xt

p1

(
ξt | {zt−1, zα},ut

)
dxt

= N−1
(
Mt; η̌t, Λ̌t

)

Following the representation of the marginalization process presented in Table
1, the canonical parameterization of the marginal is calculated as
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p2

(
Mt | {zt−1, zα},ut

)
= N−1

(
Mt; η̌t, Λ̌t

)

Λ̌t = S�
m0,m+,m−Λ̄tSm0,m+,m−

− S�
m0,m+,m−Λ̄tSxt

(
S�
xt

Λ̄tSxt

)−1
S�
xt

Λ̄tSm0,m+,m−
(5a)

η̌t = S�
m0,m+,m− η̄t − S�

m0,m+,m−Λ̄tSxt

(
S�
xt

Λ̄tSxt

)−1
S�
xt

η̄t (5b)

where Sm0,m+,m− and Sxt are projection matrices mapping the state space to
the

{
m0,m+,m−}

and xt subspaces, respectively.
The inverse term involves the block diagonal of the information matrix

corresponding to the vehicle pose, ST
xt

Λ̄tSxt , which is of fixed size. Meanwhile,
the ST

m0,m+,m−Λ̄tSxt matrix corresponds to the shared information between
the map and the vehicle pose and, taken as an outer product over the vehicle
sub-block, yields a matrix having nonzero values only for the active feature
indices. It is a result of this term that marginalization establishes the connec-
tivity among the active features shown in the right-hand side of Figure 2. The
computational complexity of this matrix outer product is limited by the Γa

bound and the order of the matrix inversion is fixed. Thus, the marginalization
can be performed in constant-time.

We complete sparsification in ESEIFs by relocalizing the vehicle within
the map using the remaining zβ measurements. The new pose estimate is,
in general, given by a nonlinear function of measurement data and corre-
sponding feature estimates of the form in (6a) where wt ∼ N

(
wt;0,R

)
is

white Gaussian noise. Equation (6b) corresponds to the linearization about
the mean of the marginal distribution, N−1

(
Mt; η̌t,Λ

)
in (5). The Jacobian,

G, is sparse as the only non-zero columns are those corresponding to the map
elements used for relocalization. Subsequently, only the mean estimates for
these features are necessary for the linearization.

xt = g
(
mβ , zβ

)
+ wt (6a)

≈ g
(
µ̌mβ

, zβ

)
+ G

(
m − µ̌t

)
+ wt (6b)

Augmenting the map distribution (5) with the new pose estimate yields a
state which can be shown to have the following canonical parameterization:

pESEIF(ξt | zt,ut) = N−1
(
ξt; η̆t, Λ̆t

)

η̆t =

[
R−1

(
g(µ̌mβ

, zβ) − Gµ̌t

)

η̌t − G�R−1
(
g(µ̌mβ

, zβ) − Gµ̌t

)
]

(7a)

Λ̆t =

[
R−1 −R−1G

−G�R−1
(
Λ̌t + G�R−1G

)
]

(7b)

Due to the sparsity of G, most terms in −R−1G of the information matrix
in (7b) that link the robot to the map are zero, except for those correspond-
ing to the landmarks used for relocalization. The new instantiation for the
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robot pose is then conditionally independent of the rest of the map. As a
result, ESEIF sparsification leads to the joint posterior having the desired
factorization:

pESEIF(ξt | zt,ut) = p(xt | mβ , zβ) p2(Mt | {zt−1, zα},ut)

As reflected by the resulting information matrix depicted in Figure 2, the
active features are then limited to those used for relocalization.

In this manner, ESEIFs control the size of the active map and, in turn, the
sparseness of the information matrix. Like the full EKF, the ESEIF performs
exact inference on an approximate model, albeit on a different posterior. When
we first marginalize out (kidnap) and subsequently relocalize the robot, we
are performing the dual of kidnapping and relocation for the standard EKF.
Essentially, we are ignoring the odometry data which links the current and
previous poses. Hence, whereas the full EKF tracks the Gaussian approxima-
tion to the posterior, p(ξt | Zt), ESEIFs and the relocated EKF maintain

the Gaussian model of an alternate distribution, p(ξt | Zt∗). In this way,
the ESEIF employs exact inference on an approximate model for which the
information matrix is exactly sparse.

3.4 Recovering the Mean

A drawback of representing the posterior in the canonical form is that we no
longer have access to the mean vector or covariance matrix. When the system
equations are nonlinear, a subset of the mean is required to perform lineariza-
tions. Naively, we could recover the entire mean vector as µt = Λ−1

t ηt, though
this operation is cubic in the dimension of the state and quickly becomes in-
tractable. Instead, we can pose the problem in terms of solving a set of linear
equations

Λtµt = ηt (8)

and take advantage of the sparseness of the information matrix. There are a
number of techniques which iteratively solve such sparse, symmetric positive
definite systems including conjugate gradient descent [13] and, more recently,
the multilevel method proposed by [9]. Aside from loop closures, the mean
vector evolves rather slowly in SLAM and, thus, the optimization can be
performed over the course of multiple time steps. This then allows us to bound
the number of iterations required per time step [2].

3.5 Data Association

Traditionally, the problem of data association is addressed by evaluating the
likelihood of a measurement for different correspondence hypothesis. The dis-
tribution follows from marginalizing out all state elements except for the vari-
ables we are interested in, xi and xj . From the duality indicated in Table 1,



12 Matthew Walter et al.

xtxt

xt xt

xtxt

xt

xt

xt

m1 m1

m1m1m1

m1m1

m1

m1

m2m2m2

m2 m2

m2m2

m2

m2

m3m3m3

m3 m3

m3m3

m3

m3

m4m4m4

m4 m4

m4m4

m4

m4

m5

m5m5m5

m5 m5

m5m5

m5

Z

zα zβ

Fig. 2. Sparsification as performed by ESEIFs during the measurement update step.
At time t, three of the mapped features are active, m+ = {m1,m2,m5} and two
are passive, m− = {m3,m4} as indicated by shaded off-diagonal elements of the
information matrix. The robot makes three observations of active features, z1, z2,
and z5, and one of a passive feature, z3. The first step of the ESEIF sparsification
algorithm, as shown in the left-most diagram, is to update the posterior based upon
a subset of the measurements, zα = {z1, z3}, resulting in a stronger constraint
with m1 as well as the formation of a link with m3, as depicted in the middle
figure. Sparsification then proceeds with the marginalization of the vehicle pose and
subsequent relocation of the robot based upon the remaining measurements, zβ . The
implication on the information matrix is the connectivity of the initial set of active
features and a desired restriction on the number of constraints with the vehicle pose.

this operation is easy in the standard form but difficult with the canonical
parameterization where a large matrix inversion is necessary. Instead, Thrun
et al. [15] first compute the conditional distribution for the Markov blanket for
xi and xj , p(xi,xj ,xk | xl), which involves simply extracting a sub-block of
the information matrix. They then invert this matrix and take the covariance
sub-block corresponding to p(xi,xj | xl) which they use for data association.
While the authors have had success using this conditional covariance, it can
be shown to yield overconfident estimates for the likelihood [4].

Alternatively, Eustice et al. [4] propose a method which solves for con-
servative estimates for the marginal covariance. The technique stems from
posing the relationship, ΛtΣt = I, as a sparse system of linear equations,
ΛtΣ∗i = ei, where Σ∗i and ei denote the ith columns of the covariance and
identity matrices, respectively. To determine the robot pose covariance, the
iterative algorithms previously presented for mean recovery can be used to
solve the set of equations formed from the robot pose columns. Combining
the estimate for robot pose covariance with a conservative estimate for the
covariance of any map element gives rise to a joint covariance which is it-
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self conservative. The joint covariance is then used to represent the marginal
distribution for data association.

4 Results

To better understand the effectiveness of the two different sparse information
filters, we compare the performance of ESEIFs and SEIFs to the standard
EKF when applied to different forms of the SLAM problem. In the first case,
we take a look at a controlled linear Gaussian simulation for which the KF, the
optimal Bayesian estimator, is the “gold standard”. We then follow with ex-
periments using real-world nonlinear datasets including a benchmark outdoor
data set widely popular in the SLAM community.

4.1 Linear Gaussian Simulation

To systematically analyze the two information-based filters, we first apply the
three estimators in a controlled simulation. The environment consists of a set
of point features, uniformly distributed to achieve a desired density of 0.10
features per unit area. The vehicle moves translationally according to a linear,
constant velocity motion model and, at any time step, is able to observe the
relative position to a limited number of neighboring features. Both the vehicle
motion as well as the measurements are corrupted by additive white Gaussian
noise.

As a basis for comparison, we apply the Kalman Filter, the optimal esti-
mator for linear Gaussian problems. The ESEIF and SEIF are implemented
with a limit of Γa = 10 active features. When sparsifying the ESEIF, we re-
serve as many of the observations for relocalizing the robot as possible, to the
extent that we do not violate the Γa bound.

In the LG case, sparse information filters have already been shown to
be computationally efficient [15]. Instead, we are interested in evaluating the
effect that the different sparsification strategies have on the estimation accu-
racy. To that end, we perform a series of Monte Carlo simulations, using the
normalized estimation error squared (NEES) [1] to measure filter consistency
using a pair of metrics. As one measure, we use the Euclidean distance be-
tween the state estimates and the ground truth which corresponds to the global
error. To get a local/relative measure of error, we first reference the robot and
map positions relative to the first observed feature, xm using the standard
compounding operation, xmi = �xm ⊕ xi. We then compute the second error
metric as the distance to the root-shifted representation of the ground truth.
We plot the global normalized errors for the estimated vehicle position as
well as for one of the map elements in Figures 3(a) and 3(b), respectively.
Comparing these errors with the 97.5% chi-square upper bound indicated by
the horizontal line, we see that the ESEIF yields consistent position estimates
with errors similar to those of the KF. The normalized errors attributed to
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Fig. 3. The time history of the (a), (b) global and (c), (d) local normalized errors for
the LG results, estimated from a series of Monte Carlo simulations. Plotted in (a)
and (c) are the two errors for the vehicle. In (b) and (d) we show the errors for one of
the features which is representative of the other elements in the map. The horizontal
threshold denotes the 97.5% chi-square confidence bound. The local ESEIF and SEIF
estimation errors are similar in magnitude to that of the Kalman Filter. The global
error attributed to the SEIF, meanwhile, is noticeably larger, exceeding the chi-
square bound. This indicates that the SEIF preserves local relationships but leads
to estimates which are globally overconfident while the ESEIF maintains both global
and local consistency.

the SEIF, on the other hand, are noticeably larger, frequently exceeding the
chi-square bound. The local errors shown in Figures 3(c) and 3(d) are simi-
lar for all three filters, generally smaller than the confidence threshold. This
behavior indicates that, in the linear Gaussian case, ESEIFs maintain a state
estimate which is both globally and locally consistent while the SEIF leads to
errors which are consistent locally but inconsistent in the absolute sense.

As a related consequence of the ESEIF sparsification strategy, the filter
maintains conservative uncertainty estimates. In Figure 4(a) we compare the
global map uncertainties for the two information filters to those of the Kalman
Filter. In particular, from the inverse of the information matrices, we compute,
for each feature, the log of the ratio of the covariance sub-block determinant
to the determinant of the sub-block for the KF. Since the KF solution repre-
sents the true distribution, values larger than zero correspond to conservative
estimates for a feature’s position while values less than zero are a sign of over-
confidence. As the histogram demonstrates, the ESEIF is conservative in its
estimate for the absolute position of each feature while each of the marginals
represented by the SEIF are overconfident. When we transform the maps rela-
tive to the first observed feature, we see in Figure 4(b) that the overconfidence
of the SEIF is less severe while the ESEIF remains conservative. As a conse-
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Fig. 4. The LG simulation estimates of map uncertainty maintained by the ESEIF
and SEIF compared with that of the KF. For each feature, we consider the log of
the ratio of the covariance sub-block determinant for the information filters to the
determinant for the KF. Values equal to zero indicate an exact estimate for the
uncertainty. Log ratios greater than zero imply conservative estimates while values
less than zero correspond to overconfidence. In (a) we show a histogram describing
the global measure of uncertainty determined directly from the inverse of the in-
formation matrices. The SEIF yields map estimates which are largely overconfident
while the ESEIF leads to estimates which are conservative. Depicted in (b), the
overconfidence of the SEIF is less severe when we consider the relative map uncer-
tainty which follows from root-shifting the state to the first feature added to the
map. The one outlier corresponds to the original world origin as represented in the
new reference frame. Meanwhile, the histogram shows that the ESEIF maintains
conservative estimates for the relative map covariance matrix.

quence of the overconfidence of its global map, the one exception in the case of
the SEIF is the representation of the original world origin in the root-shifted
reference frame.

4.2 Experimental Validation

The linear Gaussian simulations allow us systematically analyze the accuracy
of the sparsified filters when we are able to perform inference on an exact
model. Unfortunately, for most real-world applications, both the vehicle mo-
tion and observation models are nonlinear and are corrupted by noise which
is not Gaussian. To demonstrate the application of ESEIFs to typical SLAM
problems, we implement the algorithm along with the SEIF and the EKF on
two nonlinear datasets.

For the first real-world application of SLAM, we consider the benchmark
Victoria Park dataset, widely used as a testbed for SLAM algorithms. A truck
equipped with dead-reckoning sensors and a laser scanner drives in a series
of loops within Victoria Park, Sydney. Using a simple perceptual grouping
implementation, we are able to detect tree trunks located throughout the
park among the laser data which is cluttered with spurious returns. We solve
the data association problem offline to ensure that the correspondences are
the same for each filter.

We implement the ESEIF and SEIF estimators together with the EKF
which has been successfully applied to this dataset in the past. We limit



16 Matthew Walter et al.

the number of active features to a maximum number of Γa = 10 for the
information filters. When we perform sparsification in the ESEIF, our priority
is again on relocation in that we reserve as many tree observations as possible
(i.e. no more than Γa = 10) for the purpose of adding the vehicle back into the
map. Remaining measurements, if any, are used to update the ESEIF prior
to marginalization. This helps to minimize the influence of spurious data on
the relocated vehicle pose.

We plot the ESEIF and SEIF estimates of the map together with the
three sigma uncertainty bounds in Figures 5(a) and 5(b), respectively. The
estimates of the 3 km trajectory for the car are superimposed on the plot. As a
basis for comparison, the plots include the feature locations resulting from the
EKF which are nearly identical to those published elsewhere. Both sparsified
filters yield similar maps though the deviation from the EKF estimates is
noticeably larger for the SEIF than it is for the ESEIF. Furthermore, the
global confidence bounds for the ESEIF are conservative, yet comparable to
the feature uncertainties maintained by the EKF while they are significantly
overconfident for the SEIF. While not ground truth, the EKF represents the
baseline which the information filters strive to match and, yet, many of the
EKF estimates lie outside the three sigma uncertainty bounds for the SEIF.
This is especially evident in the periphery as we indicate in the inset plot.
As we saw in the LG simulation, all three algorithms seem to equivalently
represent the local map relationships given by the transformation of the map
into the vehicle’s reference frame at its final pose. Both the ESEIF relative
map shown in Figure 5(c) and the SEIF relative map in Figure 5(d) are almost
identical to the corresponding EKF results. In this case, the relative ESEIF
and SEIF uncertainty bounds now capture the EKF estimate for the feature
locations. The SEIF algorithm allows us to achieve results which are similar
to the standard EKF in the local but not global sense while ESEIFs provide a
conservative map estimate which is nearly identical to the EKF both globally
and locally.

We have seen from the plots of the two SLAM maps that SEIFs are much
more confident in their state estimates. In Figure 6(a) we compare the global
uncertainty of each feature for the ESEIF and SEIF to the EKF, again using
the log of the ratio of the determinant of the feature covariances. As with
the linear Gaussian simulations, the ESEIF log ratios are all greater than
zero, indicating that ESEIFs maintain conservative estimates for the global
uncertainty of each state element. On the other hand, those of the SEIF
are largely overconfident. Expressing the state in the vehicle reference frame,
the histogram in Figure 6(b) reveals that the SEIF remains overconfident,
although to a lesser extent. The one exception is again the representation of
the global origin in the vehicle frame and is a direct consequence of the global
inconsistency of SEIFs. The ESEIF, meanwhile, remains conservative in the
relative frame.

In the second experiment, a wheeled robot drives around a gymnasium in
which 64 track hurdles are positioned at known locations along the baselines of
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Fig. 5. Map and vehicle trajectory estimates for the Victoria Park dataset. In
each, we include the final EKF map which agrees with previous results published
in the literature. The top two plots represent the global state estimate while the
two at the bottom are the result of root-shifting the map into the vehicle frame via
compounding: xvi = �xv ⊕ xi. The plot in (a) presents the results of the ESEIF,
including the three sigma confidence bounds for each of the features. The ESEIF
produces feature estimates which are nearly identical to those of the EKF and, while
it is omitted to make the plot readable, the uncertainty ellipses are very similar for
the two filters. In (b), we see that while the SEIF and EKF maps are alike, the
difference between the two estimates is noticeably larger for the SEIF algorithm.
Additionally, the inset reveals that the SEIF yields global error estimates which
are significantly overconfident. Looking at the maps expressed in the vehicle frame,
though, we see that both (c) the ESEIF and (d) SEIF preserve the relative map
structure.
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Fig. 6. Histograms of the ESEIF and SEIF uncertainty estimates as compared to
the EKF results for the Victoria Park dataset. We again use the log of the ratio of
the covariance sub-block determinants for each feature. The histogram in (a) corre-
sponds to the direct filter estimates and is representative of the global uncertainty.
The ESEIF maintains conservative estimates for the uncertainties while the SEIF
estimates are overconfident when compared to the EKF. Expressing the map in the
vehicle’s reference frame, (b) demonstrates that SEIFs remain overconfident but are
better able to capture the relative uncertainty. Due to the global overconfidence,
there is an outlier corresponding to the representation of the global origin in the
robot’s frame. Meanwhile, the ESEIF local estimates remain conservative relative
to the EKF.

four adjacent tennis courts. Wheel encoders provide the input to the kinematic
motion model while observations of the environment are made using a SICK
laser scanner. Data association is again performed offline and is the same for
each filter.

We perform SLAM on the data again using both the ESEIF and SEIF
alongside a standard EKF implementation. When necessary, we employ the
two sparsification strategies to maintain a bound of Γa = 10 active features.
During ESEIF sparsification, we relocate the robot using a single feature ob-
servation which provides a measurement of the relative transformation (trans-
lation and rotation) between the vehicle and the hurdle.

In Figure 7(a), we show the final map estimated by the ESEIF, overlayed
onto a depiction of the ground truth. The ellipses drawn around each feature
correspond to the three sigma bound on the position of one of the hurdle
legs. The same plot is shown in Figure 7(b) for the map estimated using the
SEIF algorithm. Notice that the uncertainty bounds maintained by the SEIF
are significantly overconfident and, for many hurdles, do not include the true
feature position. While we are able to maintain an estimate of the state which
is both globally and locally conservative compared with that of the EKF using
ESEIFs, enforcing sparsity in the SEIF results in an estimate which suffers
from global inconsistency.
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Fig. 7. The final maps generated by the (a) ESEIF and (b) SEIF algorithms. In-
cluded is an outline of the tennis courts overlayed with the ground truth hurdle
poses indicated by the black cross hairs. The ellipses centered at the base leg of each
feature represent the three sigma uncertainty bounds for position. Note the signif-
icant difference in magnitude between the confidence estimates maintained by the
two filters. While the true feature locations are captured by the ESEIF uncertainty
regions, a majority of the hurdles fall outside the SEIF ellipses. This overconfidence
is a result of the approximation employed by SEIFs to enforce sparseness and is
indicative of global inconsistency.

5 Discussion

We have shown both in simulation as well as with a pair of nonlinear datasets
that the ESEIF maintains error measures which are both globally and locally
conservative relative to the full Kalman estimates. In the linear Gaussian case,
the implication is that the ESEIF sparsification strategy preserves consistency
according to both metrics. On the other hand, as the ESEIF is formulated
upon the dual of the EKF, it is subject to the same convergence issues that
are attributed to the EKF for nonlinear applications [1]. As such, though the
ESEIF error estimates are relatively conservative, this does not guarantee con-
sistency in such cases. Nonetheless, the ESEIF algorithm is able to capitalize
upon the computational benefits of the sparse information form without the
cost of additional overconfidence. In this manner it provides an efficient means
of achieving estimates nearly identical to those of the EKF which has been
successfully applied in a number of real-world situations.
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6 Conclusion

Of late, many researchers in the robotics community have been interested in
developing solutions to the SLAM problem which scale with environments of
arbitrary size. One approach that is particularly promising follows from the
key insight that the information matrix is relatively sparse for feature-based
SLAM. In the case where the matrix is exactly sparse, state estimation can
be performed in near-constant time, irrespective of the number of landmarks
in the environment.

While a majority of the elements in the information matrix are relatively
weak, the matrix is naturally dense due to the effect of marginalizing out old
robot poses. To achieve the efficiency benefits, the SEIF algorithm enforces
sparsity by deliberately breaking weak links between the robot and the map.
As a consequence of this pruning strategy, the SEIF state estimate suffers
from global inconsistency.

In this paper, we have introduced an algorithm for feature-based SLAM
which achieves an exactly sparse information matrix while maintaining global
and local consistency, relative to the standard EKF. We have shown that, by
periodically marginalizing out the robot and then relocalizing it within the
map, we control the number of active landmarks and, in turn, the population
of the information matrix. The ESEIF is then able to benefit from the effi-
ciency of the sparse information form while yielding conservative estimates
for the robot pose and map.

We have demonstrated the performance of ESEIFs, both in a systematic
linear Gaussian simulation as well as on two different nonlinear datasets. In all
three, we have shown that ESEIFs maintain estimates nearly identical to those
of the EKF which, in comparison, are both globally and locally conservative.
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