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1 Introduction

Parallel robots are nowadays leaving academic laboratories and are finding
their way in an increasingly larger number of application fields such as tele-
scopes, fine positioning devices, fast packaging, machine-tool, medical appli-
cation. A key issue for such use is optimal design as performances of parallel
robots are very sensitive to their dimensioning. Optimal design methodolo-
gies have to rely on kinetostatic performance indices and accuracy is clearly
a key-issue for many applications. It has also be a key-issue for serial robots
and consequently this problem has been extensively studied and various ac-
curacy indices have been defined. The results have been in general directly
transposed to parallel robots. We will now review how well these indices are
appropriate for parallel robots.

2 Jacobian and inverse Jacobian matrix

Let Xa denotes the generalized coordinates of the end-effector composed of
parameters describing the available n d.o.f. of the end-effector while X de-
notes all the generalized coordinates of the end-effector. We will impose no
constraints on the choice of X (e.g. for a Gough robot with a planar platform
the pose may be represented by the 9 coordinates of 3 particular points on
the end-effector).

The geometry of the robot is described by its joints variables vector Θ.
The twist W of the end effector is composed of its translational and angular
velocities and the restricted twist Wa is defined as the restriction of W to
the available d.o.f. of the robot. It is well known that for robot having at
least 2 rotational d.o.f. W is not the time-derivative of X as there is no
representation of the orientation whose derivatives corresponds to the angular
velocities. However there exists usually a matrix H such that
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W = HẊ (1)

In the usual approach the jacobian matrix Jk linearly relates the actuated
joint velocities Θ̇a to Wa:

Wa = JkΘ̇a (2)

In this paper we consider only non-redundant robots so that matrix Jk is
square and we will call it the kinematic jacobian. A feature of parallel robots
is that it is usually easy to establish an analytical form for J−1

k
while it is

often impossible to obtain Jk.
But we may also define other jacobian matrices by first changing the pa-

rameters in Θ. Indeed parallel robots differ from their serial counterpart by
a larger number of passive joints and it may thus be interesting to include
the m passive joints variables Θp. If Θ is defined as (Θa,Θp) we may then
define write the l inverse kinematics equations as F(Θ,Xa) = 0 from which
we derive

∂F

∂Θ
Θ̇ +

∂F

∂Xa

Ẋa = UΘ̇ + VaẊa = 0 (3)

where U is (l × (n +m)) and Va is (l × n). This relation allows to quantify
the influence of the measurement errors on the passive and actuated joints
variables on the positioning errors ∆Xa on the n d.o.f. of the end-effector by
using (1).

Although we say that some robot have n < 6 d.o.f., still the end-effector is
a 6 d.o.f. rigid body and positioning errors on all d.o.f. should be examined.
It is thus interesting to determine an inverse jacobian that involves the full
twist W of the end-effector. In that case we write the kinematics equations
as G(Θ,X) = 0. If we fix X we know that these kinematics equations have a
finite number of solutions, which implies that the number of equations in G

should be n+m. By differentiation we get:

∂G

∂Θ
Θ̇ +

∂G

∂X
Ẋ = AΘ̇ + BẊ = 0 (4)

where A is a square n+m×n+mmatrix while B is n+m×6. Provided that
H is square and not singular we may now derive an inverse jacobian such that

Θ̇ = −A−1BH−1W = J−1W (5)

where J−1 is n+m× 6 In most cases however a velocity analysis allows one
to obtain a simpler inverse jacobian matrix through a relation that involves
only Θ̇a:

(

Θ̇a

O

)

= J−1

fk
W (6)

where J−1

fk
is n+m×6 and will be called the full inverse kinematics jacobian.

We may further extend this approach to take into account the design
parameters P of the robot (e.g. the location of the anchor points of the legs
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in a Gough platform). For that purpose the kinematics equations will be
written as G(P ,Θ,X) = 0 and the matrix of the partial derivatives of G

with respect to P will allow one to quantify the influence of the errors on P
on the positioning error of the end-effector.

As may be seen there is not a single inverse jacobian matrix but a multi-
plicity of them. Note however an important property of the inverse jacobian
J−1 of (5) with respect to J−1

fk
: the rank of J−1

fk
is the same than the rank of

J−1.
It is also important to note that any inverse jacobian involving the full

twist of the end-effector W will not be homogeneous in terms of units. This
will be true also for the inverse kinematic jacobian for robot involving both
translation and rotational d.o.f. for the end-effector. Consequently many ma-
trix properties (such as the trace, determinant) will not be invariant under a
change of units.

In this paper we will focus on the influence of ∆Θa on the positioning
errors of the end-effector through J−1

fk
. The necessity of using the full inverse

kinematic jacobian will be emphasized on an example.

2.1 Example: the 3 − UP U robot

Tsai [10] has proposed this robot as a 3 d.o.f. translation robot (figure 1).
Each leg of this robot is constituted, starting from the base, by a U joint
followed by an extensible leg terminated by another U joint whose axis are

the same than the U joint on the base. This constraint allows theoretically
to obtain only translation for the end-effector. This example will allow us to

Fig. 1. The 3− UPU robot

establish a methodology for determining the full inverse kinematic jacobian.
But it will also enable to show the importance of this matrix. The story is that
such a robot was designed at Seoul National University (SNU) and that is was
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exhibiting a strange behavior: although the prismatic actuators were locked,
the end-effector was exhibiting significant orientation motion. This phenom-
ena was explained by Bonev and Zlatanov [1] and later in [2, 11]. Furthermore
motion sensitivity to manufacturing tolerances has been studied [5, 8] and has
shown that this robot was very sensitive.

We will denote by B1, B2, B3 the center of the U joints on the platform
and will now calculate the full inverse kinematic jacobian matrix. The velocity
VB of the B points is VB = V + BC×Ω. Let us define n as the unit vector
of the leg and compute the dot product of the right and left terms of the
previous equation:

VB.n = ρ̇n = V.n + (BC × Ω).n = V.n + (CB× n).Ω (7)

Now let us define ui,vi the unit vectors of the two joint axis of the U joint
at Bi. These vectors are the same for the base and platform. The angular
velocity of the leg ωl with respect to the base and the angular velocity of the
platform ωp with respect to the leg are

ωl = θ̇i
Aui + α̇i

Avi ωp = θ̇i
Bui + α̇i

Bvi

The angular velocity of the platform is

Ω = ωl + ωp = Ki
1ui +Ki

2vi

where Ki
1,K

i
2 can be obtained from the previous equations. Now define si =

ui×vi and compute the dot product of the right and left terms of the previous
equation by si:

si.Ω = 0 (8)

Combining equations (7, 8) we get the full velocities equations involving the
twist W as

(

ρ̇i

0

)

= J−1

fk
W =

(

ni (CBi × ni)
0 si

)

W (9)

which establish the full inverse kinematic jacobian. The inverse kinematic
jacobian may be extracted from J−1

fk
as the 3 × 3 matrix whose rows are the

ni vectors. But an important point for accuracy analysis is to consider the
lower part of J−1

fk
which shows that if s1.(s2 × s3) = 0 the platform may

exhibit orientation motion that may be infinitesimal or finite according to the
geometry of the U joint. It happens that the design of the SNU robot was in
the later category.

3 Manipulability

It is realistic to assume that the joint errors are bounded and consequently so
will be the positioning errors. The norm of the bound may be chosen arbitrary
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as (6) is linear so that a simple scaling will allow to determine the positioning
error from the errors obtained for a given bound. A value of 1 for the bound
is usually chosen:

||∆Θ|| ≤ 1 (10)

which leads to
∆XT J−TJ−1∆X ≤ 1 (11)

A classical geometrical interpretation of this relation is presented for the 2D
case in figure 2. If the Euclidean norm is used (10) represents a circle in the

∆θ1

∆θ2

∆x

∆y

J−T J−1
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1

1

-1

-1
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1

-1
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J

Fig. 2. The mapping between the joints errors space and the generalized coordinates
error space induced by J−TJ according to the norm: on top the Euclidean norm and
on bottom the infinity norm.

joints errors space. This circle is mapped through matrix J−TJ−1 into an
ellipse in the generalized coordinates error space. More generally the mapping
transform the hyper-sphere of the joints errors space into an ellipsoid, usually
called the manipulability ellipsoid.

In fact the use of the Euclidean norm is not realistic: it implies for exam-
ple that if one of the joint error is 1, then by some mysterious influence all
the other joint errors are 0. The appropriate norm is the infinity norm that
states that the absolute value of the joint errors are independently bounded
by 1. With this norm (10) represents a n-dimensional square in the joints
errors space that is mapped into the kinematics polyhedron, that includes the
manipulability ellipsoid, in the generalized coordinates errors space. Figure 2
illustrates this mapping in the 2D case. It must be noted that, apart of be-
ing more realistic, the previous mapping leads to geometrical object that can
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be more easily manipulated than the ellipsoid. For example assume that one
want to determine what are all the possible end-effector velocities that can
be obtained in 2 different poses of the end-effector. For that purpose we will
have to calculate the intersection of the 2 polyhedra obtained for the 2 poses,
a well known problem of computational geometry, that can be much more
easily solved than computing the intersection of 2 ellipsoids.

4 Condition number

A large dimension along a given axis of the kinematics polyhedron indicates a
large amplification error. It is therefore necessary to quantify this amplification
factor. Let us consider the linear system:

J−1∆X = ∆Θ ,

where J−1 is a n×n inverse kinematic jacobian matrix. The error amplification
factor in this system expresses how a relative error in Θ gets multiplied and
leads to a relative error in X. It characterize in some sense the dexterity of
the robot and will be used as a performance index. We now use a norm such
that

||J−1∆X|| ≤ ||J−1||||∆X|| ,
and obtain

||∆X||
||X|| ≤ ||J−1||||J|| ||∆Θ||

||Θ|| ;

The error amplification factor, called the condition number κ, is therefore
defined as

κ(J−1) = ||J−1||||J|| .
The condition number is thus dependent on the choice of the matrix norm.
The most used norms are:

• the 2-norm defined as the square root of the largest eigenvalue of matrix
J−TJ−1: the condition number of J−1 is thus the square root of the ratio
between the largest and the smallest eigenvalues of J−TJ−1,

• the Euclidean (or Frobenius) norm defined for the m × n matrix A by:

||A|| =
√

∑i=m

i=1

∑j=n

j=1
|aij |2 or equivalently as

√

tr(ATA): if λi denotes

the eigenvalues of J−TJ−1, then the condition number is the ratio between
∑

λ2
i and

∏

λi. Note that sometime is also used a weighted Frobenius norm
in which ATA is substituted by ATWA where W is the weight matrix

In these two cases, the smallest possible value of the condition number is 1.
The inverse of the condition number, which has a value in [0,1], is also often
used. A value of 0 will indicate that the inverse jacobian matrix is singular.
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The condition number is quite often used as an index to describe first the
accuracy/dexterity of a robot and, second, the closeness of a pose to a singu-
larity. For the later point it is in general not possible to define a mathematical
distance to a singularity for robots whose d.o.f. is a mix between translation
and orientation: hence the use of the condition number is as valid an index
than any other one. But it has the advantage of being a single number for
describing the overall kinematic behavior of a robot.

The definition of the condition number makes clear that we cannot cal-
culate its analytical form as a function of the pose parameters except for
very simple robot. But robust linear algebra software allows to calculate it
numerically for a given pose.

But for robot having both translation and orientation d.o.f. there is a ma-
jor drawback of the condition number: the matrix involved in its calculation
are not homogeneous in terms of units. Hence the value of the condition num-
ber for a given robot and pose will change according to the unit choice, while
clearly the kinematic accuracy is constant. Ma and Angeles [6] suggested to
define a normalized inverse jacobian matrix by dividing the rotational ele-
ments of the matrix by a length such as the length of the links in a nominal
position, or the natural length defined as that which minimizes the condition
number for a given pose. Still the choice of the length remains arbitrary as it
just allows to define a correspondence between a rotation and a translation
and as mentioned by Park [9] ”this arbitrariness is an unavoidable consequence
of the geometry of SE(3)”.

To evaluate the efficiency of the condition number for accuracy evaluation
we just use our Gough robot and chooses three reference poses defined by
the coordinates of the center and the Euler angles as P1=x = y = 0, z=53
cm, ψ = 0, θ = 0, φ = 0 (roughly the pose obtained for the mid-stroke of
the actuator), P2=x = y = 0, z=53 cm, ψ = 30◦, θ = 0, φ = 0 (whose
orientation is roughly 1/3 of the possible rotation around the z axis) and
P3=x = y = 10, z=53 cm, ψ = 0, θ = 0, φ = 0.(close to the border of the
translation workspace for this orientation). We then computed the absolute
value of the maximal positioning error at these poses, obtained as the sum of
the absolute value of the elements of the rows of the kinematic jacobian, as
indicated in the following table.

Pose ∆Xx ∆Xy ∆Xz ∆Xθx
∆Xθy

∆Xθz

P1 0.1184 0.1268 0.010087 0.1185 0.1184 0.697
P2 0.1189 0.1274 0.01266 0.1333 0.1429 0.808
P3 0.123 0.1309 0.0372 0.15 0.1663 0.7208

It can be seen in this table that the positioning errors are significantly
larger for P2 and P3 compared to P1. As for P3 the errors are usually larger
compared to P2 except for the rotation around z. Hence as far as accuracy
is concerned the ordering of the poses from the most to the least accurate is
P1, P2, P3 and we expect to obtain a similar ordering for the condition number.
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For this robot we define the normalized inverse jacobian matrix J−1
n ob-

tained by dividing the orientation components of the J−1

k
by 53 i.e. roughly

the legs lengths at pose P1. The considered accuracy indices will be

• Cd: the determinant of J−1

k

• C2, C
n
2 : the 2-norm condition number of J−1

k
, J−1

n

• CF , C
n
F : the Frobenius-norm condition number of J−1

k
, J−1

n

• C3
2 , C

3

F : the 2-norm and Frobenius norm condition number of the inverse
jacobian matrix obtained when the inverse kinematics equations are based
on the coordinates of 3 points of the end-effector. The chosen points will
be all possible triplets in the set Bi: hence we will provide ranges for these
indices.

The results are presented in the following table:

Cd C2 C
n

2 CF C
n

F C
3

2 C
3

F

P1 -29.22 75.14 63.9 152.8 70.2 [9.55,55.47] [258.8,3204.9]
P2 -24.64 75.16 73.8 154 80.9 [9.62,43.84] [218.8,2383.6]
P3 -23.93 80.65 68.4 158.3 74.7 [10.06,58.95] [286.5,3618]

For C2 it may be seen that the difference is surprisingly very small between
P1, P2 and significant between P3, P2. The ordering between P2, P3 is not
respected for Cn

2 , C
n
F although these indices are coherent when considering

P1. For CF , Cd the ordering is respected although the changes in the index
are relatively small for CF . On the other hand there is a surprisingly decrease
of C3

2 , C
3

F between P2 and P1 while there is a significant increase between P1

and P3. Hence none of this condition numbers exhibits a completely coherent
behavior with respect to the accuracy of this robot.

This simple example shows clearly that the concept of condition number
has to be carefully considered when talking about optimal design for robot.

5 Isotropy

An isotropic pose of a robot is defined as a pose where κ is equal to 1 and a
robot which has only isotropic poses in its workspace is coined an isotropic

robot. Designing an isotropic parallel robot is often considered as a design ob-
jective [3, 12]. A trivial example of isotropic robot is a serial Cartesian X-Y-Z
robot whose kinematic jacobian matrix is the identity. But this is a surprising
denomination as stricto sensu isotropy indicates that the performances of a
robot should be the same whatever is the motion direction. Now if we assume
that all the actuator velocities of a X-Y-Z robot are bounded to 1, then the
maximal velocity of the end-effector lie in the range [1,

√
3]: as far as veloc-

ity is considered such robot is far from isotropy. Still the concept may have
some interest: for example any Cartesian robot whose actuator axis are not
mutually orthogonal will exhibit a ratio between its maximal velocities over
its workspace that will be larger than

√
3. Hence, instead of using the name

”isotropic robot” we may consider using the name ”maximally regular robot”.
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6 Global conditioning index

The condition number is a local indication for the dexterity of a robot. To
evaluate the dexterity of a robot over a given workspace W Gosselin [4] has
introduced the global conditioning index (GCI) as:

GCI =

∫

W

(

1

κ

)

dW
∫

W
dW

.

which correspond to the average value of 1/κ. Clearly this concept makes
sense for the optimal design of robot for which the extremal and average
value of any performance are important design factors. But apart of the va-
lidity of the condition number that has been discussed in a previous section
the problem with the GCI is its calculation. Clearly we cannot expect to ob-
tain its closed-form and we must rely on a numerical evaluation. The usual
method is to sample the workspace using a regular grid, compute 1/κi at
each node Ni and approximate the GCI as GCIa, the sum of the 1/κi divided
by the number of nodes. This calculation may be computer intensive as its
complexity is exponential with respect to the number of d.o.f. of the robot.
Furthermore this method does not allow to get a bound on |GCI − GCIa|. To
deal with this error problem it is sometimes assumed that if the result with m1

sampling points is close to the result obtained with m2 points, m2 being sig-
nificantly larger than m1, then the later result is a good approximation of the
index. This assumption will be true only if the condition number is smooth
enough, a claim that is difficult to support. Consider for example a simple
planar serial 2R robot: its GCI can be computed almost exactly as it depends
only on a single parameter. We sample this parameter using 10, 20, . . ., m1,
m2 = m1 +10 points and stop the calculation when the relative error between
GCIa(m1),GCIa(m2) is lower than 0.5% and assumes GCI ≈ GCIa(m2). For
m1 = 50 the relative error is 0.377% while the relative error on the GCI is
still 1.751%. It may be assumed that such error will even be larger for more
complex robot.

A better evaluation will probably be obtained by using Monte-Carlo in-
tegration (with an error that decreases as 1/

√
n where n is the number of

sampling nodes) or quasi-Monte Carlo. In the previous example (which is not
favorable for Monte-Carlo method as there is only one parameter) we found
out that by using the same stop criteria the relative error on the GCI was
reduced to 0.63%. A certified evaluation of the global conditioning index is
therefore an open problem but nevertheless the calculation of such index will
probably be computer intensive.

7 Conclusion

Classical dexterity indices such as the condition number are not very adequate
for parallel robots. In our opinion the most appropriate accuracy indices are
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the determination of the maximal positioning errors, their average values and
their variance. We have presented in a recent paper a a computer intensive
method for finding the largest maximal positioning errors, up to an arbitrary
accuracy, of a 6 d.o.f. robot [7]. A real challenge is to design algorithms for
calculating the average and variance of the maximal positioning errors over a
given workspace. An important point is that there is no need to calculate these
values exactly as soon as it is possible to impose a bound on the calculation
error. Indeed for comparison purposes an approximate value with a guaranteed
error will be sufficient.
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