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Abstract

A novel model for dynamic emergence and adaptation of embodied be-
havior is proposed. A musculo-skeletal system is controlled by a number
of chaotic elements, each of which driving a muscle based on local sensory
feedback. Thus, the chaotic elements interact with each other through
the physical body and the environment. This overall structure is mod-
elled as a coupled chaotic system, which has been known in the complex
systems science for its capability of creating and moving among extremely
rich variety of ordered patterns. In our model, body-environment inter-
action dynamics, or embodiment, serves as the chaos coupling field, which
is non-linear and time-varying. Theoretically very little is known about
such cases, but since the coupling field directly reflects the current body-
environment dynamics, we believe that the emergent ordered patterns
correspond to useful motor coordination patterns which immediately get
reorganized in response to dynamically changing environmental situation.
We implemented the above model and carried out a series of experiments
using a dynamics simulator. The results confirmed the above conjecture.
In a “muscle-joint” model and a “multi-legged insect” model, the systems
autonomously explored and found meaningful motor behaviors within a
few seconds. And when the environmental condition changes they imme-
diately created novel motor patterns which comply with the new situation.
Unlike existing learning methods, our model does not require long train-
ing period or well-designed reward function. The emergence and adapta-
tion takes place immediately, and yet effective in the current embodied
situation. Furthermore, we present a methodology to introduce “goal-
directedness” to the system without destroying its emergent property.

∗Due to page limitations, this version of the paper presents only partial results (learning
part is omitted). A revised and enhanced version will be submitted for final publication.
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1 Introduction

Real world is full of unexpected contingencies and opportunities. Even at the
level of physical motion such as legged locomotion, it is very hard to design ap-
propriate controllers for all possible terrain conditions under uncertain pertur-
bations or even partial mechanical defects. Traditional model-based approach
and trajectory planning with feedback control has a strong limitation in this
aspect.

Alternatively, adaptive methodologies such as reinforcement learning and
genetic algorithm has been actively investigated and successfully applied to real
robots. However, they require vast number of trials before converging onto
appropriate behaviors or control laws. And once the bodily or environmental
condition changes, they need thousands of trials again to adapt to it. More-
over, these methodologies require careful design of evaluation functions which
is not always straightforward unless the characteristics of the body and the
environment is well understood.

In this paper, we propose a novel model of immediate behavior adaptation in
response to unpredicted dynamic changes in bodily and environmental situation.
If a behavior is generated by some fixed control or by searching to optimize some
fixed evaluation function, the above goal is hard to achieve. Rather than control
or optimization, we should exploit emergence of consistent motoric patterns from
embodied interaction dynamics.

Importance of emergent behavior from embodied interactions has been es-
tablished [3]. It has been shown that an important effect of embodiment is
imposing consistent structures in sensory-motor patterns. However, methodolo-
gies for capturing such patterns relied on hebbian neural learning or evolutionary
methodologies, requiring a large number of trials.

In the context of dynamic motion control, exploitation of the inherent task
dynamics has been succesfully applied to juggling [5] and other periodical tasks.
When an adaptive neural system is coupled with such natural dynamics, even a
complicated body exhibits very robust and flexible behavior as a result of mutual
entrainment. One such example is neural oscillator based biped walking [8].
However, in all the successful examples so far, the system stays within a single
limit cycle dynamics. Its robustness is limited to attractor dynamics and has
no capability of switching to different consistent dynamics.

We propose a novel model in which a distributed set of chaotic elements
are coupled with the multi-element musculo-skeletal system. Consistent mo-
tor behavior patterns emerge from embodied interactions. The same pinciple
gives rise to immediate adaptation capability with switching to different/novel
motion patterns. It requires no training or evaluation function. The system
autonomously explores, discovers, and adopts possible motion patterns.

In the following sections, we first present our model of behavior emergence.
There we describe the underlying theory called coupled chaotic system and show
how it can be adopted for a model of embodied behavior emergence. The coupled
chaotic system has been known in the complex systems science for its capability
of creating and moving among extremely rich variety of ordered patterns.
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Our model of behavior emergence is quite simple. However, its behavior is
extremely complex. Even theoretically, a behavior of coupled chaotic systems
with time-varying non-linear coupling is very poorly understood. Moreover,
there has been no attempt so far to exploit this phenomena for robotic behavior
generation. Therefore, our emphasis in this paper is to investigate the following
points through a series of experiments.

1. How to design the connection between the body and the chaotic elements?
2. How does the system behave in case the structure of body dynamics

changes?
3. How does the system behave in case the structure of environment changes?
4. How can we impose “goal-directedness” onto the behavior while maintain-

ing the emergent property?

We present a series of experiments using a dynamics simulator. Cocrete
interface parameters and systematic investigation of resulting behavior patterns
will be given. The results confirmed the above conjecture; In a “muscle-joint”
model and a “multi-legged insect” model, the systems autonomously explored
and found meaningful motor behaviors within a few seconds. And when the
environmental condition changes they immediately created novel motor patterns
which comply with the new situation.

Furthermore, we present a methodology to introduce “goal-directedness” to
the system without destroying its emergent property.

2 A model of emergence from a coupled chaotic
system

2.1 Coupled chaotic system

Coupled Map Lattice(CML) and Globally Coupled Map(GCM)[2] have been
investigated in complex systems science for their rich dynamics properties. They
follow (1)-(2). CML is a coupled chaotic system with local interaction (1). GCM
is one with global interaction (2).
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Where, xi
n denotes the internal state of ith element at time n, N the total

number of elements, and ε the connection weight between elements. f(x) can be
any chaos function. In this paper, we adopt a standard logistic map represented
as the following.

f (x) = 1− ax2 (3)

With no interaction between the elements, all of them behave chaotically.

3



But with interaction, depending on the parameters (a, ε), variety-rich dy-
namical structures emerge such as ordered phases (generates clusters in which
elements oscillate simultaneously) and partially ordered phases (configuration
of clusters changes with times).

This phenomenon is essentially caused by a competition of two tendencies;
(1) A tendency to synchronize each other by the effect of the mean-field, and
(2) a tendency to take arbitrarily different values due to the nature of chaos
dynamics.

2.2 Body and environment as an interaction field of chaotic
elements
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Motor (N)Sensor (N)

Chaotic

Element (1)

Sensor (1) Motor (1)
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Figure 1: Outline of our model

Figure 1 shows our model of chaos coupling through robotic embodiment.
N chaotic elements are connected with actuators and sensors of the robot

body. Each element drives a corresponding actuator based on its current internal
state. The effect of N actuators collectively change the physical state of the
body under the constraints and the effects of the environment. In other words,
the output of N chaotic elements are mixed together and transformed by the
embodied dynamics. The result is then sensed at each site of the actuator,
e.g. in terms of joint angle or muscle length. Each sensor value is then input
to the corresponding chaotic element. Then each element updates, by chaotic
mapping, its internal state from the new sensor value and the previous internal
state.

The important points of our model are as follows :

• There are interactions and mutual entrainments among the dynamics of
the chaos system, the body (musculo-skeletal system) and the environ-
ment.
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• Having a chaotic element connect each sensor and actuator, the whole
system is organized as a coupled chaotic system.

• The body and the environment serve as the interaction field for the chaotic
elements.

In our model, body-environment interaction dynamics, or embodiment, serves
as the chaos coupling field, which is non-linear and time-varying. Theoretically
very little is known about such cases, but since the coupling field directly reflects
the current body-environment dynamics, we believe that the emergent ordered
patterns correspond to useful motor coordination patterns which immediately
get reorganized in response to dynamically changing environmental situation.

We devised 3 types of formula to update the internal state of an element :
(4), (5), and (6). Where, u denotes the internal state, s the sensor value, and s̄
the mean of sensor values. The 2nd and the 3rd terms in f of (4) and (6) are
intended to be GCM-like connection and CML-like connection. ε1, ε2 are the
weight of each connection. We used logistic map (3) for f(x)1. Initial condition
of u is a random value within (0, 1).

Table 1 shows the interpretation of each formula 2.
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3 Experiments

We use dynamics simulation library ODE[7] to simulate the dynamics of a robot
and environment. The time step size of ODE was 0.01 and that of couple chaotic
system was Tc. In implementation, u and s in section 2.2 were associated with
sraw and m ((7), (8), (9), (10)), where sraw denotes the raw value of a sensor
and m the motor output of an actuator. Note that the gains gu, guout , gs, gsin

1In implementation, to avoid divergence, x is constrained as follows : if(x > 1) x =
1, if(x < −1) x = −1

2In order to understand the “adjustment” effect, the GCM/CML equations should be
transformed by applying f on both sides and re-arranged to match (4)-(6)
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Table 1: Interpretation of the update rules of the coupled chaotic systems

GCM Each element follows its own pure chaos
dynamics with some adjustment to ap-
proach the global mean value of all the
other pure chaos elements.

CML Each element follows its own pure chaos
dynamics with some adjustment to ap-
proach the local mean value of the adjacent
pure chaos elements.

Type-A Each element follows its own pure chaos
dynamics with some adjustment to reduce
the difference of the corresponding sensor
value from the global and the local means
of other sensor values.

Type-B Each element is updated by a chaos map
of its sensor value. The sensor value con-
tains the effects of the self and the other
elements mixed together through the em-
bodiment. The mixing function does not
appear explicitly in the equation. It is a
non-linear and time-varying function, re-
flecting the physical dynamics of the body-
environment interaction.

Type-C In addition to the Type-B, some adjust-
ment is applied in order to reduce the de-
viation of the corresponding sensor value
from the global and the local means of
other sensor values.

and the offsets ou, ouout , os, osin are independent of the element index i. They
are constant parameters.

uout = gu · u + ou (7)
m = guout · uout + ouout (8)

sin = gsin · sraw + osin (9)
s = gs · sin + os (10)

3.1 Experiments with a muscle-joint model

3.1.1 Configuration

Firstly, we experiment with a muscle-joint model shown in Fig. 2 which consists
of two cylindrical rigid bodies and 12 muscle fibers. The base link is fixed to
the ground, and the upper link is connected by a ball-joint to the base link. It
can be bent in any direction within the limit of 0.5 [rad]. The 12 muscle fibers
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are attached between the two links isotropically.

Figure 2: Appearance of the muscle-joint model

Each muscle fiber is modelled with Hill’s characteristic equation [4]. m in (8)
corresponds to the activation level of a muscle fiber in this model. The sensor
value sraw is provided by either a “length-sensor” measuring the normalized
length of the muscle fiber or a “tension sensor”3 measuring the normalized
tension of the muscle fiber. In all experiments, (guout

, ouout
) was set to (0.5, 0.5)

respectively. In case of tension sensor, (gsin , osin) was set to (−2.5, 3.0). In case
of length sensor, (gsin , osin) was set to (1.0, 0.0).

3.1.2 Experiments with/without sensor feedback

Firstly, when there is no sensor feedback (Fig. 3), the motion of the joint was
chaotic and no cluster structure was observed.

Figure 3: Experiment with no sensor feedback. Trajectory of the center of mass
of the upper link projected on x − y plane (left graph). Cluster plot of the
chaotic elements (right). For each element with index i, its motor output uout

is plotted superposedly for n = 10, 11, 12, . . . . The points of all the elements
are connected with a line for each time step. (Type-A, a = 1.6, ε1 = 0.0, ε2 =
0.0, Tc = 0.21, gu = 1.7, gs = 2.0, ou = −0.65, os = −1.0)

Secondly, in case of an experiment with tension sensor feedback, the motion
was chaotic for the initial several steps. But after a time, it changed to the
ordered rhythmical motion. Fig. 4 is the graph while the motion was rhythmical.
Cluster structure is observed.

3In case of tension sensor, before the process of (10), sin is constrained as follows: if(sin >
1) sin = 1, if(sin < −1) sin = −1
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Figure 4: Experiment with feedback of tension sensor (Type-A, tension sensor,
a = 1.55, ε1 = 0.3, ε2 = 0.3, Tc = 0.21, gu = 1.7, gs = 2.0, ou = −0.65, os =
−1.0)

Figure 5: Experiment with feedback of length sensor (Type-B, length sensor,
a = 1.6, Tc = 0.21, gu = 1.7, gs = 1.0, ou = −0.65, os = 0.0)

In case of an experiment with length sensor feedback, the motion was ordered
and rhythmical from the beginning (Fig. 5). In the same experiment with a
different parameter set, the motion was rhythmical in the beginning, then after
a while, the direction of oscillation changed and it began another rhythmical
motion (Fig. 6). The change of oscillating direction occurred nonperiodically.

3.1.3 Analisys of the system behavior with parameter variations

In order to examine how the system behavior changes with parameter variations,
we analyzed the time series of a global variable for various parameter sets. We
chose (x, y), the coordinates of the center of mass of the top link projected on
the base plane, as the global variable representing the behavior characteristic
of the entire system. We adopted maximum Lyapunov exponent as the method
to analyze the time series 4. (x, y) was sampled every time the chaos mapping
is applied. Data from 300 steps except for the first 10 steps were used for
the analysis. To estimate Lyapunov exponent from time series, we used the
nonlinear time series analysis package “TISEAN”[1]. The algorithm to estimate

4To put it simply, maximum Lyapunov exponent of chaotic dynamics is positive and that
of limit cycle dynamics is zero.
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Figure 6: Experiment when dynamic transitions could be seen. The upper graph
shows the behavior before transition and the lower one shows that after transi-
tion. (Type-A, length sensor, a = 1.6, Tc = 0.21, gu = 0.52, gs = 1.0, ou =
−0.107, os = 0.0)

Lyapunov exponent adopted by this software was the method of Sano-Sawada[6].
We tested 10 different initial conditions for each parameter set and calculated
the probability of λmax being zero or negative, where λmax denotes the larger
of λx and λy. Here, λx denotes the maximum Lyapunov exponent estimated
from the time series of x and likewise for λy.

The upper graph of Fig. 7 shows the probability and the lower one shows
orderliness of apparent motion for each parameter set. We tested several pat-
terns of initial condition for each parameter set and categorized the orderliness
by qualitative observation as shown in Table 2. The two graphs show a similar
structure.

Table 2: Classification based on appearance of motion

A Stable rhythmic motion appears, and it lasts for-
ever.

B Rhythmic motion appears, but it sometimes
changes into a disorder or transits to another
rhythmic pattern.

C No rhythmic motion appears.
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Figure 7: Lyapunov exponent of global variable and orderliness of appearance
of motion to “a” and “ε”. (Type-A, tension-sensor, Tc = 0.21, gu = 1.7, gs =
2.0, ou = −0.65, os = −1.0)

3.1.4 Experiments with variations in the body structure

In our model, the body is a interaction field for the chaotic elements. In this
experiment, we observed the system’s behavior when the structure of body is
changed by adding muscle fibers aligned askew or adding muscle fibers aligned
disproportionately (Fig. 8).

In case of an experiment with added muscle fibers aligned askew, depending
on the parameter a, we observed four kinds of motion which could not be seen
in case of the original configuration: Around a = 1.3 the joint remained leaning
with a small oscillation, around a = 1.5 it alternated the direction of oscillation,
around a = 1.6 it made an aperiodic motion, and greater than a = 1.7 it rotated
orderly. Fig. 9 shows the result : beginning at the top, a = 1.3, a = 1.5, a = 1.6,
and a = 1.75.

0 1 2 3 4 5 6 7 8 9 10 11 0 0 1 2 3 4 5 6 7 8 9 10 11 0

Figure 8: Alignment of muscle fibers (expanded along the circumferential direc-
tion)

In case of the experiment with added muscle fibers aligned disproportion-
ately, the direction of oscillation was always from (−1, 1) to (1,−1), while in
case of no added muscle fibers the direction varied depending on the initial
condition. Fig. 10 shows the result.
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Figure 9: Experiment with added muscle fibers aligned askew (Type-B, length
sensor, Tc = 0.21, gu = 0.52, gs = 1.0, ou = −0.107, os = 0.0)
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Figure 10: Experiment with added muscle fibers aligned disproportionately
(Type-A, tension sensor, a = 1.55, ε1 = 0.3, ε2 = 0.3, Tc = 0.21, gu =
1.7, gs = 2.0, ou = −0.65, os = −1.0)

3.1.5 Experiments with a dynamic change of the environmental struc-
ture

The environment makes a part of the interaction field for the chaotic elements.
In this experiment, we observed the system’s behavior when the structure of
the environment is dynamically changed by bringing in an obstacle disturbing
the oscillation of the muscle-joint system (Fig. 11).

Figure 11: The muscle joint model and obstacle

The obstacle was brought in at t = 3. Fig. 12 shows the result : beginning at
the top, from t = 0.42 to t = 3.15, from t = 3.15 to t = 6.93, and from t = 6.93
to t = 12.6. A little while after colliding against the obstacle, the joint made
a complex motion that it repeated colliding in a short period of time and the
motor commands were chaotic. But soon after that, within about 3 seconds, it
began to oscillate orderly in a new collision-free direction.
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Figure 12: Experiment with obstacle (Type-B, length sensor, a = 1.6, Tc =
0.21, gu = 0.82, gs = 1.0, ou = −0.3, os = 0.0)
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3.2 Experiments with an insect-like multi-legged robot

3.2.1 Configuration

In order to investigate the effects of our model in a more meaningful behavior
with more complex interactions with the environment, we defined an insect-like
multi-legged robot. The robot has a disc-shaped body with 12 legs attached
on its fringe with regular spacing (Fig. 13). Each leg is connected to the body
by a rotational joint and 2 springs whose spring constant is K. Each leg can
swing only in the direction shown in the middle of Fig. 13, and its joint angle is
constrained to be less than ±θlim. The environment has a standard gravity and
a constant friction (with the static friction coefficient µ). m in (8) corresponds
to the torque τ of each joint. sraw in (9) corresponds to the angle θ. Table 3
shows the parameters common to all the experiments using the above robot
model.

KK

Figure 13: Appearance of the insect-like robot (left), direction of leg mo-
tion(middle), and the mechanism of a leg (right).

Table 3: Parameters common to all experiments with the insect-like robot

Tc K θlim guout gs gsin ouout os osin

0.17 1.0 0.8 1.0 0.5 1.25 0.0 0.5 0.0

3.2.2 Experiments with sensor feedback

With no sensor feedback, no order was observed in the motion of the robot. It
just kept on randomly struggling around the same spot on the ground.

On the other hand, when the sensor feedback is introduced, after the initial
chaotic period (a few seconds), the robot started to move in a certain direction,
and then finally showed a stable locomotive behavior with a constant speed in
a stable direction. The locomotive behavior was realized by synchronizing the
3 or 4 hind legs and kicking the ground with them. Fig. 14 is the graph while
the locomotive behavior was observed.
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Figure 14: Experiment with sensor feedback (Type-C, a = 1.47, ε1 = 0.1, ε2 =
0.1, gu = 0.4, ou = −0.28, µ = 0.1)

3.2.3 Imposing goal-directedness without destructing the emergent
property

In this experiment, the configuration was changed as follows.

1. A weight was attached to the body via a hinge joint which was placed
above the center of the body and can rotate 360 degrees around the z axis
(Fig. 15).

2. The start position of the robot was (0, 0) on the ground plane, and the
goal position was set as (−5,−5).

3. The robot is assumed to be able to continuously sense the direction of the
goal.

4. The robot drives the hinge joint and moves the weight to the opposite side
of the body from the goal (Fig. 15). The robot also freezes the motion of
the four legs positioned perpendicular to the orientation of goal.

5. The other legs are actuated in the same way as the previous experiment.

fixed

direction of goal

fixed

Figure 15: Appearance of the robot and control mechanism to follow objective
behavior while maintaining the emergent ability

Fig. 16 shows the result. The robot approached the goal with a gallop-like
locomotion. On its way toward the goal the robot sometimes appeared to have
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lost the direction temporarilly, but then it immediately made some motion in
effect of adjusting the direction of movement toward the goal.

Figure 16: Experiment with the control mechanism designed for the behavior
of the whole system to follow the objective behavior (Type-C, a = 1.6, ε1 =
0.3, ε2 = 0.3, gu = 0.4, ou = −0.28, µ = 0.1)

4 Summary and Discussions

4.1 About the results

Experiment using a muscle joint model No ordered motion could be seen
in case of no sensor feedback. But ordered rhythmic motion emerged in case of
Type-A with tension sensors and in case of Type-B with length sensors.

What happened should be that ordered global patterns emerged from the
chaotic elements due to the structural sychronization effect by the interaction
field of body and environment. The result appeared as rhythmic motions with
compressed degrees-of-freedom. In other words, this took the form of coordi-
nated motion of the multi-degree-of-freedom body.

In comparison with the pure mathemaical model of [2], our model is like
GCM in that the global variable, i.e. the movement of the upper link, is affected
by a collective contribution from all the chaos elements, which is fed back to
each element. And it is also like CML in that the fed back value depends on
the position of each element in the body. Dynamic transition like Fig. 6 may
be related to the characteristic phenomena of coupled chaotic system called
“chaotic itinerancy”, discovered by Tsuda et al.

Analysis of the system behavior parameter variations Each behavior
pattern of the system was persistent over a certain range of area in the parameter
space. Fig. 7 also supports in terms of Lyapnov exponent the above obsevation
that the sensitivity of behavior to the parameter sets is low. Here, the maximum
Lyapunov exponent indicates the presence of orderliness of motion.

Experiments with variations in the body structure In case of the ex-
periment with added muscle fibers aligned askew, various new motion patterns
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exploiting the added mode were observed.
In case of the experiment with added muscle fibers aligned disproportion-

ately, the direction in which oscillation emerged was the only direction in which
the muscle fibers were added, and the trajectory of the link was more straight
than that with no added fibers.

Our interpretation is that the motion emerged from the interaction of chaotic
elements reflects the dynamics of the body. In other words, the system auto-
matically generated a new motion adapted to the new body.

Experiments with a dynamic change of the environmental structure
When an obstacle is suddenly introduced against the established motion pattern
of the muscle-joint model, a few seconds of struggling followed by a transition
to a new collision-free motion pattern was observed. Our interpretation is that
the change of the environment destroyed the established motion pattern which
allowed other modes of oscillation to dominate. In other words, the system
exploited its redundant degrees of freedom which have been suppressed but
continuosly active in order to instantaneously cope with the new situation. In-
terestingly, chaotic motion appeared during the transition phase.

The above result provides an example of a very quick adaptation to a change
of environment. And it was realized by a simple mechanism of interacting
nonlinear dynamics, without any explicit programming of obstacle avoidance.

Experiments with an insect-like multi-legged robot The phenomenon
that the robot continued moving to a certain direction in spite of its symmetric
body structure can be regarded as an emergence of an ordered pattern.

It is also interesting to note that despite of the perfectly symmetric config-
uration of the body, the individual roles of the legs emerged and differentiated,
such as the three or four hind-legs kicking the ground in a coordinated mannar.

Imposing goal-directedness without destructing the emergent prop-
erty Generally speaking, “emergence ” and “control” have conflicting char-
acteristics. In order to make the robot to move in a particular direction, one
might specify a particular trajectory for each leg, making sure that it precisely
traces the trajectory. Such a method completely destroys the interaction among
the chaotic elements together with the emergence property.

In our experiment, goal-directedness was imposed via a physical process in
terms of dynamically changing constraints, e.g. by constraining the motion of
some legs and by changing the weight balance of the body. As a result, the entire
system exhibited an objective behavior. What happened is that the change
of the global parameter and the constraint invoked the immediate adaptation
confirmed in the previous experiments, resulting in a meaningful adjustment of
the motion pattern via the embodied feedback to each element.

Despite of the imposed constraints, the system still maintains its emergent
capability because a majority of the legs stay unconstrained. Hence, emergence
and control coexists in this example.
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4.2 Conclusions

We have presented a novel model of dynamic behavior emergence and adap-
tation, in which multiple chaos elements are bidirectionally coupled with the
multiple degrees of freedom bodies. This model is inspired by pure mathemati-
cal models called GCM and CML which are capable of autonomously creating
and switching among a rich variety of dynamic patterns.

The original mathematical model assumed a simple averaging of multiple
chaos elements in order to make them interact with each other and to dynam-
ically form coherent patterns. In our model, the averaging is replaced by the
body-environment interaction dynamics, which is nonlinear and time-varying.
Here, the robot body is driven by the collective contribution from the multiple
chaos elements under the constrains from the environmental structure, and the
resulting body motion is sensed at each degree of freedom, feeding back to each
corresponding chaos element. Thus the body-environment dynamics, or em-
bodiment, acts as the interaction field for the chaos elements. It maintains the
essential effect of mixing and creating a common mode from multiple chaotic
signals as the original averaging, but has an additional effect of reflecting the dy-
namic state of the physical body on the feedback signals which are differentiated
depending on each corresponding physical part of the body.

Although rigorous theoretical analysis of the effect of our model is still an
open issue, we showed some of its power in several simulation experiments. The
simulated robots exhibited the following capabilities:

• Capability of creating and switching coherent motions which appear as
appropriate and meaningful for given bodily and environmental structures.

• Capability to immediately adapt to changes in bodily structures and to
dynamic changes in the environmental constraints. Unlike other adapta-
tion methods based on learning or evolutionary computation, our system
required only a few seconds of struggling before creating a new motion
pattern.

• Capability of goal-directed and yet emergent behaviors. This was achieved
by carefully imposing a goal-directed effect on the chaos coupling field, or
the global dynamics, i.e. the physics of the body.

The above work suggests many important open issues for future research,
including applicability to more general body structures, integrating more vari-
ety of sensors, persuing more complicated and meaningful behaviors, integration
with learning mechanisims for fixating and combining the acquired motion pat-
terns, and using the proposed model to understand the effect of embodiment
more deeply.
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