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Summary. We present design of a compact haptic device in which parallel mecha-
nisms are utilized. The design realizes a large workspace of orientational motion in a
compact volume of the device. The device is a parallel-serial mechanism consisting of
a modified DELTA mechanism for translational motion and a spatial five-bar gimbal
mechanism for orientational motion. We derive an analytical model of stiffness for
the modified DELTA mechanism which we utilize for the design of a stiff platform
for translational motion. The model shows that the compliance matrix is a function
of kinematic parameters as well as elastic parameters of each mechanical element.
Configuration dependency of the compliance matrix is therefore an important point
to be noticed.

1 Introduction

A device to make a bridge between human haptic sense and data space is called
a haptic device. It displays the sense of touch to a human. It transfers human
haptic sense in the real world to signals in data space. Those devices include
a tactile display, a force/torque display, etc. A master arm in a master/slave
system is a type of haptic device that displays force/torque information at a
slave arm. This paper discusses on the design of such a haptic device of master
arm type.

For a haptic device of master arm type, PHANTOM of SensAble Technolo-
gies, Inc. [1] is well known. But this has not sufficient force/torque capacity
and is unable to display a very rigid feeling. A non-holonomic haptic device
to display a rigid contact using a wheel has been proposed [2]. However, it
is difficult to realize a haptic device of six DOF (Degrees Of Freedom). Fast
six-DOF motion is realize by a haptic device of magnetic levitation type [3].
However, the workspace of the device is limited. A parallel wire system [4]
may realize fast motion but requires a large place for itself.
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To solve those problems, this paper proposes to apply parallel mechanisms
to the design. The target is to realize a compact six-DOF device with large
workspace for orientational motion and with capability of high-frequency mo-
tion. A compact six-DOF parallel mechanism like [5] may be used as a haptic
device. However, the haptic device built by such a parallel mechanism only,
will have limitation in orientational workspace. It is difficult to realize a large
orientational workspace by such a parallel mechanism. A redundant paral-
lel mechanism [6] may enlarge the workspace to some extent but need extra
motors.

A stiff and light-weight mechanism is needed to increase the bandwidth of
frequency response. For this purpose, a parallel mechanism is a good selection.
Stiffness analysis of a parallel mechanism has been studied by, for example,
Gosselin [7]. However, he considers only the stiffness of each actuator. Huang
[8] proposed a method of stiffness analysis for a parallel mechanism, in which
elastic components are considered. However, his analysis does not deal with
bearings at free joints that are often used in the parallel mechanism.

We present a design of a compact haptic device in which parallel mecha-
nisms are utilized and a large orientational workspace is realized in a compact
volume of the device [9]. The device is a parallel-serial mechanism consisting of
a modified DELTA mechanism for translational motion and a spatial five-bar
gimbal mechanism for orientational motion. We derive an analytical model
of stiffness for the modified DELTA mechanism to design a stiff platform for
translational motion [10].

The paper is organized as follows: In Section 2, the design of a mechanism
for the haptic device is presented. In Section 3, a model for stiffness analysis
is derived, based on which the design is elaborated in Section 4 to yield a
mechanism with well-balanced stiffness. The paper is concluded in Section 5

2 Synthesis of a Compact 6-DOF Mechanism

In this section, we present synthesis of a compact six-DOF mechanism for
a haptic device of a master arm type. Design requirements and a six-DOF
mechanism to meet the requirements are presented.

2.1 Design Requirements

Design requirements for a mechanism of the targeted haptic device are listed
as follows:

1. Capability of six-DOF motion,
2. Capability of high-frequency motion,
3. Compact space for placing, and
4. Large workspace.
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Fig. 1. Overview of the haptic
device
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Fig. 2. DOF arrangement

To meet the requirements 1, 2, and 3, the parallel mechanism [11], [12] will be
a good candidate. However, the requirement 4 for orientational motion will
not be met by a parallel mechanism only, since orientational workspace of the
parallel mechanism is usually very limited. In this paper, we solve the prob-
lem by applying two parallel mechanisms connected serially to translational
motion and to orientation motion, separately.

2.2 A Compact 6-DOF Mechanism

The overview of the mechanism that we synthesize is shown in Figure 1.
Architecture of the mechanism is shown in Figure 2, diagrammatically. As
shown in the figure, the mechanism consists of three parts, two of which
are parallel mechanisms, connected serially. The remaining one is a serial
mechanism of one DOF. Thus, the mechanism is a parallel-serial mechanism.

The root of the mechanism is for three-DOF translational motion. Its
overview is shown in Figure 3. It is a type of the DELTA mechanism invented
by Clavel [13]. However, it is slightly different from the Clavel’s DELTA.
Difference is shown in Figure 4. The conventional DELTA uses ball joints
to connect the rod to the arm on one end and to the traveling plate on the
other, while the mechanism proposed in this paper uses ball bearings for those
connections. We call this mechanism a modified DELTA mechanism. With the
modification in the mechanism, we have larger movable range for the joints
between arm and rod and between rod and traveling plate, respectively. This
is shown in Figure 5. A similar mechanism has been proposed by Tsai [14].

The middle and the top parts of the mechanism are for orientational mo-
tion. The middle part is a five-bar gimbal mechanism [15] as shown in Figure 6.
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Fig. 3. The modified DELTA mechanism
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Fig. 4. Arrangement of DOF of the modified DELTA mechanism

This realizes two orientational motions, that is roll θr and pitch θp. Yaw mo-
tion θy is realized by the top part of the mechanism. An assembly drawing of
the gimbal mechanism is shown in Figure 7. The axes for roll and pitch mo-
tions are supported by two bearings grounded on the rigid frame. It is noted
that a parallel mechanism to implement the three orientational motions si-
multaneously has been proposed in [16], but we do not employ this mechanism
because its movable range for yaw is small.

To meets the design requirements, the modified DELTA mechanism at
the root has to be sufficiently stiff because it has to carry the mechanism for
orientational motion. In the following sections we present procedure to design
a stiff mechanism for this part.
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Fig. 7. An assembly drawing of the sub-
system for orientational motion

3 Stiffness Analysis of the Modified DELTA Mechanism

In this section, we present a model for the analysis of stiffness of a parallel
mechanism. Then, we apply this model to the modified DELTA mechanism
presented in the previous section, and point out that the stiffness depends on
the kinematic parameters, and therefore on the configuration of the mecha-
nism, even when the same mechanical components are used.

3.1 A Stiffness Model of a Parallel Mechanism

A parallel mechanism is a closed-loop mechanism consisting of a base plate, a
traveling plate and elementary chains that connect the two plates. Its stiffness
is determined by the stiffness of each elementary chain. We assume the base
and traveling plates are rigid. We begin with the analysis of the elementary
chain and derive a compliance matrix of the target mechanism.
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Tip Compliance of an Elementary Chain

The stiffness of each elementary chain is represented by its tip compliance
[17], which we are going to derive here. Svinin and Uchiyama [18] studied the
static compliant motion of a serial manipulator with elastic deformations in
its structure. Let us suppose that the elementary chain consists of m elastic
elements and n joints as shown in Figure 8. Forces and moments at each elastic
element cause its elastic deformations of translation and rotation:

ei =
[
δxi δyi δzi φxi φyi φzi

]T (1)

where ei is an elastic deformation vector of the ith element. δxi, δyi and δzi

are the translational deformations, and φxi, φyi and φzi are the orientational
deformations, respectively. Assembling the all ei for i = 1, 2, · · · , m, we have
an elastic deformation vector for the elementary chain:

e =
[
eT

1 eT
2 · · · eT

m

]T (2)

which is determined by forces and moments on each element. If we suppose
linear elasticity, we have

e = Ce

[
fT

1 fT
2 · · · fT

m

]T
(3)

where

Ce = diag
[
Ce1 Ce2 · · · Cem

]
(4)

is the compliance matrix of the all elastic elements, Cei is the local compliance
matrix of the ith elastic element, and f i is the forces and moments acting on
the ith element. The tip compliance matrix Cs of the elementary chain which
relates the tip deformations of the elementary chain to the forces and moments
applied at the tip is given by

Cs = Je (θ, 0) CeJ
T
e (θ, 0) (5)

assuming that the elastic deformation e is small, namely e = 0 in Je (θ, e),
where Je (θ, e) is the Jacobian matrix consisting of the Jacobian matrices for
each elastic element defined by

Je (θ, e) =
[
Je1 (θ, e) Je2 (θ, e) · · · Jem (θ, e)

]
. (6)

Jei (θ, e) is the Jacobian matrix for each elastic element. Je (θ, e) is a func-
tion of both θ and e. θ is a joint angle vector.

Tip Compliance of a Parallel Mechanism

Using the compliance matrix of the elementary chain given by Equation (5) we
derive a tip compliance matrix of the parallel mechanism shown in Figure 9.



Design of a Compact 6-DOF Haptic Device to Use Parallel Mechanisms 7

Ce1

Cem

.

.
.

Ce2
Ce3

.

.

θ1

θ2

θn

θ3

.
.
.

.

Ce4

Ce5

Fig. 8. A model of a serial mechanism
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Fig. 9. A model of a parallel mechanism

This parallel mechanism consists of t elemental chains. The point O is the
origin of the base plate and the point P on the traveling plate is the output
point of the mechanism. Each elementary chain connects the points O and P.
The tip compliance matrix of the parallel mechanism is given by

C−1
p = C−1

s1 + C−1
s2 + · · · + C−1

st (7)

where Csj (j = 1, 2, · · · , t) is the compliance matrix of the jth elementary
chain. It should be noted that the elastic deformations of both traveling plate
and base plate are ignored.

Now, we have an equation to calculate the tip compliance matrix of the
parallel mechanism. To calculate Cp by Equation (7), we need to have Cei

in Equation (4), that is a model for the ith elastic element. Typical elastic
elements in a parallel mechanism are a link and a bearing. We present models
for them in the following sections.

Modeling of a Link

Suppose that the ith elastic element is a link of a slender beam. Forces and
moments on the beam cause elastic deformations. The relation between the
forces and moments and the elastic deformations at the end of the beam is
well known. It is expressed by



8 Masaru Uchiyama, Yuichi Tsumaki, and Woo-Keun Yoon

Cei =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

L3

3EIx
0 0 0 0 0

0
L3

3EIy
0 0 0 − L2

2EIz

0 0
L3

3EIz
0

L2

2EIy
0

0 0 0
L

GIp
0 0

0 0
L2

2EIz
0

L

EIy
0

0 − L2

2EIy
0 0 0

L

EIz

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

(8)

where L is the link length, E is the modulus of the longitudinal elasticity, G
is the modulus of the transverse elasticity. Ix, Iy and Iz are the geometrical
moments of inertia. Ip is the polar moment of inertia.

Modeling of a Bearing

A bearing is a machine element often used in the parallel mechanism. When
the ith element is a bearing, the compliance matrix is given by

Cei =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1
ka

0 0 0 0 0

0
1
kr

0 0 0 0

0 0
1
kr

0 0 0

0 0 0 Φ 0 0

0 0 0 0
1

km
0

0 0 0 0 0
1

km

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

(9)

where ka is the coefficient of elasticity in the axial direction, kr is the coefficient
of elasticity in the radial direction, 1/Φ is the coefficient of rotational elasticity
in the axial direction, and km is the coefficient of rotational elasticity in the
radial direction. The direction of the x axis is chosen to be the rotation axis.

If the axial rotation is free, which is usually the case for a bearing, the
coefficient of rotational elasticity 1/Φ is nearly zero and Φ is close to infinity.
However, if Φ is chosen close to infinity, the numerical calculation becomes
unstable. Therefore, Φ should be chosen large enough but not close to infinity.
In this paper, the value of 108 rad/Nm is used. This value is much larger than
any other matrix elements.
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Fig. 10. An assembly drawing of the modified DELTA mechanism

3.2 Application of the Model to the Modified DELTA Mechanism

We apply the stiffness model derived in the previous section to the modified
DELTA mechanism in order to obtain a compliance matrix for the mechanism.
A schematic diagram of this mechanism is shown in Figure 10. This mechanism
is made of a base, bearings 0, three arms, bearings 1 and 2, three rod parts,
bearings 3 and 4 and a traveling plate. The output shaft of the motor is
supported by the bearings 0. The rod part which consists of a planar parallel
mechanism is made of the bearings 2, two parallel rods and the bearings 3
(see also Figures 3 and 4). The passive joints are equipped with conventional
ball bearings that are mounted in pairs. We derive the compliance matrix for
this mechanism, first deriving a model of the bearing pair, then a model of
the rod part, and finally assembling those models.

Modeling of a Pair of Bearings

The connection between the rod part and the arm and between the rod part
and the traveling plate is through a pair of bearings as shown in Figure 11.
The coefficients of elasticity in the axial and radial directions of this part are
obtained as those for a bearing multiplied by two. The coefficient of rotational
elasticity in the axial direction is also obtained by the same way. However, the
coefficient of rotational elasticity in the radial direction cannot be obtained
simply by this way. This is obtained using a model of deformation shown in
Figure 12. The moment M in the figure is obtained by
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Fig. 11. A two bearing system
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Fig. 12. Elastic deformation of the two
bearing system

M = 2
(
kmθ +

a

2
δxkr

)
= 2

(
kmθ +

a

2
a

2
θkr

)

= 2
{

km +
(a

2

)2

kr

}
θ (10)

where δx is the elastic deformation in the radial direction, θ is the rotation
angle, and a is the distance between the two bearings as shown in the figure.
km and kr are elastic coefficients. Therefore, we have the compliance matrix
of the pair of bearings as follows:

Cei =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1
2ka

0 0 0 0 0

0
1

2kr
0 0 0 0

0 0
1

2kr
0 0 0

0 0 0
Φ

2
0 0

0 0 0 0
1

2
{

km +
(a

2

)2

kr

} 0

0 0 0 0 0
1

2
{

km +
(a

2

)2

kr

}

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

.

(11)

Modeling of the Rod Part by a Parallel Mechanism

The rod part is made of a planar parallel mechanism. This parallel mechanism
consists of two parallel rods and the bearings 2 and 3 as shown in Figure 10
(see also Figures 3 and 4). We consider the two rods (Rod L and R) sepa-
rately as shown in Figure 13 and calculate the compliance matrix of each rod,
first, and then, the compliance matrix of the whole rod system. According to
Equation (4), the compliance matrices CeL and CeR for the rods L and R,
respectively, shown in Figure 13, are given by

CeL = diag
[
Cb2L CrL Cb3L

]
(12)
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and

CeR = diag
[
Cb2R CrR Cb3R

]
(13)

where Cb2L, Cb2R, Cb3L and Cb3R are the compliance matrices of the bear-
ings 2L, 2R, 3L and 3R, respectively. CrL and CrR are the compliance matri-
ces of the rods L and R, respectively. The Jacobian matrices JeL (θ, 0) and
JeR (θ, 0) for the rods L and R are written as

JeL (θ, 0) =
[
Jb2L (θ, 0) JrL (θ, 0) Jb3L (θ, 0)

]
(14)

and

JeR (θ, 0) =
[
Jb2R (θ, 0) JrR (θ, 0) Jb3R (θ, 0)

]
, (15)

respectively, where Jb2L (θ, 0), Jb2R (θ, 0), Jb3L (θ, 0) and Jb3R (θ, 0) are
the Jacobian matrices of the bearings 2L, 2R, 3L and 3R, respectively.
JrL (θ, 0) and JrR (θ, 0) are the Jacobian matrices of the rods L and R,
respectively. Therefore, the compliance matrices CrodL and CrodR for the
rods L and R can be written as

CrodL = JeL (θ, 0) CeLJT
eL (θ, 0) (16)

and

CrodR = JeR (θ, 0) CeR JT
eR (θ, 0) , (17)

respectively. Consequently, the compliance matrix of the rod part C2r3 is
obtained as

C−1
2r3 = C−1

rodL + C−1
rodR . (18)

Stiffness of the Modified DELTA Mechanism

The modified DELTA mechanism consists of three elementary chains as shown
in Figure 3. Each elementary chain is connected to the same traveling plate
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which does not deform elastically. A point on the traveling plate can be a
common tip for the three elementary chains. Therefore, we first derive the
compliance matrices Csj (j = 1, 2, 3) for the jth elementary chain using
Equation (5). Then, using Equation (7), we obtain the compliance matrix Cp

of the whole mechanism.
The compliance matrix Cej (j = 1, 2, 3) defined by Equation (4) for each

elementary chain is given by

Cej = diag
[
Cb0j Caj Cb1j C2r3j Cb4j

]
(19)

where Cb0j , Cb1j and Cb4j are the compliance matrices of the bearings 0,
1, and 4, respectively. Caj is the compliance matrix of the arm. C2r3j is the
compliance matrix of the rod part. The Jacobian matrix Jej (θ, 0) is written
as

Jej (θ, 0) =
[
Jb0j (θ, 0) Jaj (θ, 0) Jb1j (θ, 0) J2r3j (θ, 0) Jb4j (θ, 0)

]

(20)

where Jb0j (θ, 0), Jb1j (θ, 0) and Jb4j (θ, 0) are the Jacobian matrices of the
bearings 0, 1 and 4, respectively. Jaj (θ, 0) is the Jacobian matrix of the arm.
J2r3j (θ, 0) is the Jacobian matrix of the rod part. Therefore, the compliance
matrix of the jth elementary chain Csj is obtained by

Csj = Jej (θ, 0) CejJ
T
ej (θ, 0) . (21)

Combining the three matrices for the three elementary chains, the compliance
matrix of the whole mechanism Cp is obtained by

C−1
p = C−1

s1 + C−1
s2 + C−1

s3 . (22)

As has been seen in the derivation, the compliance matrix Cp is a func-
tion of the joint angles θ, kinematic parameters of the structure, and elastic
parameters of the components such as links, bearings, etc. The model ob-
tained here in this section gives a tool to optimize those parameters through
evaluation of the matrix Cp.

4 Detailed Design of the Modified DELTA Mechanism

We discuss on the design of a modified DELTA mechanism utilizing the stiff-
ness model derived in the previous section. Using this model we elaborate
the stiffness of the modified DELTA mechanism to decide its parameters in
details. We assume a specification that the workspace be around a sphere of
75 mm radius. The procedure of the design is listed as follows:

1. First, we consider the singular configuration to obtain a set of kinematic
parameters and realize a singularity-free workspace. This part does not
use the stiffness model but uses only a kinematic model.
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2. We discuss how each elastic element influences the tip stiffness and identify
the elastic elements having a large influence on the reduction of the tip
stiffness. Then, we use the results to improve the tip stiffness.

3. We discuss on kinematic parameters that influence on the tip stiffness and
that may be used as a design index for a well-balanced tip stiffness.

4. Finally, we propose an index for the design of a modified DELTA mecha-
nism and give a design example.

4.1 Singular configuration

Two types of singular configuration are considered. They are undermobility
and overmobility singularities [12]. Figure 14 shows the two types of singularity
for the modified DELTA mechanism, diagrammatically on a plane. This figure
suggests that the case where the base radius R is equal to or larger than
the traveling plate radius r be more recommendable than the case where
r > R because the former case does not have overmobility singularity in the
workspace.

In the following discussion, we set both the traveling plate radius and
the base radius equal to 40 mm. Also, since the workspace is given around a
sphere of 75 mm radius, we set the sum of the arm length and of the rod length
220mm, the minimum height 50mm in order to avoid the undermobility, and
the maximum height 200mm in order to avoid the overmobility.

4.2 Parameters of the Modified DELTA Mechanism

Kinematic parameters of the modified DELTA mechanism are shown in Fig-
ure 15. Point O is the origin and point T is the tip position. L is the arm
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Fig. 15. Kinematic parameters of the modified DELTA mechanism

Table 1. Values of kinematic parameters

Parameter [mm]

Rod length M 110

Arm length L 110

Base radius R 40

Traveling plate radius r 40

length, M is the rod length, R is the base radius, r is the traveling plate
radius and z is the traveling plate height which is the distance between points
O and S. Here, we deal with the case where the distance between points S
and T is 15 mm, the distance between points T and U is 63.5 mm, and the
distance between the two parallel rods at the rod part is 31 mm. The values
of M , L, R, and r are given in Table 1.

It is assumed that the arms, rods, motor axes, bearings 0, 1, 2, 3 and 4
deform elastically. More specific details on the parts of the modified DELTA
mechanism are given below:

• The arm is a hollow pole, made of A7075 material, with an internal diam-
eter of 8 mm and an external diameter of 12 mm.

• The rod is a prismatic solid beam, made of SUS304 material, one side
measure of which is 5mm and the other 6mm.

• Bearing 0 is an NSK model F688A. Bearings 1 and 4 are NSK model
MR128.

• Bearings 2 and 3 are NSK model F684.
• The motor is a Maxon model A-max 26.

From the values of Table 1 and the elastic parameters of the above parts,
we calculate the compliance matrices: Caj for the arms, CrL and CrR for
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the rods, Cb0j , Cb1j , Cb2L, Cb2R, Cb3L, Cb3R, and Cb4j for the bearings. All
bearings are used in pairs.

The stiffness at the tip position (point U, see Figure 15) of the modified
DELTA mechanism changes largely depending on the traveling plate position.
Therefore, it is necessary to design the mechanism taking into consideration
the tip stiffness at all points in the workspace. However, it is very difficult
to evaluate all the 6×6 elements of the tip compliance matrix at all points.
Therefore, we simplify the evaluation by limiting the point only in the z
direction, with no motion in the (x, y) plane. In this case, Cp is given by

Cp =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

A 0 0 0 B 0
0 A 0 −B 0 0
0 0 C 0 0 0
0 −B 0 D 0 0
B 0 0 0 D 0
0 0 0 0 0 E

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

(23)

where A, B, C, D and E are non-zero elements determined by kinematic and
elastic parameters.

It should be noted that the value of Φ for bearing 0 is measured directly
in the real setup and made 0.0058 rad/Nm. In the bearing 0 a motor axis is
inserted. Therefore, the compliance around this axis depends on the perfor-
mance of the motor, control law, etc.

4.3 Influence of Each Elastic Element on the Tip Stiffness

Evaluating Cp in Equation (23) for each of the compliance matrices Caj for
the arms, CrL and CrR for the rods, Cb0j , Cb1j , Cb2L, Cb2R, Cb3L, Cb3R,
and Cb4j for the bearings, with the rest of them being zero, we know influences
of each elastic element on the tip compliance matrix. Through this numerical
analysis we find that the influence on the element A and B of the bearings
2 and 3 is large, and we decrease the influence by replacing the bearings by
ceramic bearings. Also, to decrease the influence of the arm on the elements
C, D and E, we change the arm internal diameter to 10 mm and its external
diameter to 14 mm. Like this way, the compliance matrix is improved.

4.4 Relation Between Tip Stiffness and α

The changes of the compliance matrix for the tip (point U) under elastic
deformation of all the elements together (arms, rods, motor axes, bearings
0, 1, 2, 3, and 4) are shown in Figure 16, where α is the angle between the
traveling plate and the rod as has been shown in Figure 15. According to
Figure 16, when α increases, each of the elements A, B, C, D and E of
Equation (23) changes as follows:

• The compliance in the direction of x- and y-axes (element A ) increases.
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Fig. 16. Elements of the tip compliance matrix as a function of the parameter α

• The compliance of rotation around x- and y-axes against y and x forces,
respectively, (element B ) decreases for the most part of α, although it
increases for a while at about 50 degrees.

• The compliance in the direction of x- and y-axes against y and x moments,
respectively, (element B ) changes in the same manner.

• The compliance in the direction of z-axis (element C ) increases.
• The compliance of rotation around x- and y-axes (element D ) decreases.
• The compliance of rotation around z-axis (element E ) increases.

Therefore, in order to obtain a well-balanced stiffness, it is necessary to limit
the value of α properly in the workspace.
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4.5 A Design Index for the Modified DELTA Mechanism

From the above results, we find that the tip stiffness of the modified DELTA
mechanism changes largely depending on the configuration, represented by
the parameter α, even if elastic parameters are fixed. Therefore, we may use
α as a design index. We should notice that the value of α depends on the
base radius, the traveling plate radius, the arm length and the rod length.
According to the results of numerical calculation, the value of α in the range
from 40 to 70 degrees is best for realizing a well-balanced tip stiffness. If the
value of α is outside this range, the stiffness of many elements decreases.

Based on the discussion, we decide that both the traveling plate and the
base radii are 40 mm, the arm length is 93mm and the rod length is 127mm, in
order to obtain a good balance of stiffness in the specified workspace (around
a sphere of 75 mm radius).

5 Conclusions

We have presented a design of a compact haptic device in which parallel mech-
anisms are utilized and a large workspace of orientational motion is realized.
The device is a parallel-serial mechanism consisting of a modified DELTA
mechanism for translational motion and a spatial five-bar gimbal mechanism
for orientational motion. We have derived an analytical model of stiffness for
the modified DELTA mechanism, which we have utilized for the design of stiff
platform for translational motion. The model shows that the compliance ma-
trix is a function of kinematic parameters as well as elastic parameters of each
element. Configuration dependency of the compliance matrix is an important
point to be noticed. Key points newly proposed in the stiffness model are:

• Exploitation of stiffness analysis method for a flexible arm (manipulator)
to obtain stiffness of the elementary chains in deriving the tip stiffness of
the parallel mechanism.

• Modeling of the free motion around the axis of rotation in a bearing using
a very small value of the elasticity coefficient.

We have obtained the following results regarding the design of the modified
DELTA mechanism:

• The angle α can be a design index to optimize the stiffness of the modified
DELTA mechanism.

• The stiffness of the bearings 2 and 3 should be sufficiently large.

From these results, we have found that α be restricted within the value be-
tween 40 to 70 degrees in order to obtain a well-balanced stiffness.

Future research will be directed to design of a more compact haptic device
with higher frequency response using an actuator with faster response and
with less friction.
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