
Visual GPS (Spherical Camera Localization and Mapping)

Objective: To make the spherical camera into a GPS receiver that
triangulates pose from 3 visual landmarks having apriori world coordinates
(e.g. GPS). Then, to rapidly GPS-map other nearby vertices from 2 poses.

Pose calculation would be done using the directional triangulation algo
recently published by Bierre1:

 Pose = algo (LM0, d0CAM, LM1, d1CAM, LM2, d2CAM)

Mapping of unknown vertices would be done using ray intersection from as
few as two poses. These secondary landmarks could stand-in as
surrogate landmarks during occlusion of primary landmarks.

LM0 (x y z)
LM1 (x y z)

LM2 (x y z)
(in backspace)

Possible application: Backfill as robotic world navigator during GPS blackouts.

Camera technology: LadyBug2 camera can be operated as a spherical
camera, as vendor calibrates pixels to a spherical space map.

dCAM = DirVec3Of(icam, ipixel)

Vn

dCAM

768x1024 image patch
in Direction Space

Unit
Sphere

d0CAM d1CAM

d2CAM

1 Position and Attitude Sensing by Directional Triangulation, P. Bierre, Institute of
Navigation, National Technical Meeting, Emerging Technologies Panel, Jan 2006,
Monterey CA.

Overview of algorithmic technology

CAM Origin
 [0 0 0]

d0 d1

d2

s01

s02 s12r0

r1
r2

Position: Camera positioned from directional sightings of 3 vertices. The tetrahedron in
camera coordinates is solved for its leg lengths [r0 r1 r2], using the Law of Cosines:

s01 = dist (LM0, LM1) s02 = dist (LM0, LM2) s12 = dist (LM1, LM2)

s012 = r02 + r12 - 2 r0 r1 (d0 • d1)

s022 = r02 + r22 - 2 r0 r2 (d0 • d2)

s122 = r12 + r22 - 2 r1 r2 (d1 • d2)

Though non-linear, a simple binary search on a single parameterized
 search variable yields the solution, so it is obtained rapidly.

Law of Cosines: c2 = a2 + b2 - 2 a b cosθ
 (cosθ = dot prod of enclosing direction vectors)

The trick is to fit the triangle shape to the directional cone.

c

ba θ

Knowing [r0 r1 r2], and [LM0 LM1 LM2], camera location is solved for
as the intersection of 3 overlapping spheres (distance trilateration)

Overview of algorithmic technology

Attitude: Camera attitude is solved for using the new rotational inference algorithm .
The 3D attitude of an observational platform may be inferred from observing the directions
of any 2 known-direction vertices in the environment:

x

z
Y

d1ind2in

x

z
Y

d1out

d2out

R?

The proof is simple, but requires some familiarity working with 3x3 matrix rotators1.

R1 R2

x

z
Y

d1ind2in

input
space

z

x

Y

d1out

d2out

output
space

z’

x’

Y’

d1’

d2’

intermediate
space

R1 = [d1in ----- (d1in x d2in)norm] R2 = [d1out ----- (d1out x d2out)norm]

Unknown rotator R can be factored into two rotators we can compute, R1 and R2:

R = R1 • R2-1

Lightning fast, and well behaved. A camera-based software gyro (patent pending).

rotator = [newXaxis newYaxis newZaxis] (any two axes are sufficient)

1 Flexing the Power of Algorithmic Geometry, Pierre Bierre, Pierre Bierre Design 2006

Initial estimate of positioning accuracy: In some cases, a vertex may be calculated with
sub-pixel resolution, from an edge intersection. In other cases (flagpole, antenna peak)
sub-pixel resolution might not be possible. The table shows varying resolution:

Assessment: In general, these accuracies look comparable or somewhat better than
GPS positioning accuracies. These don’t include error in the reference vertex definitions,
only the Δθ * distance error contributed by the camera.

Speed estimates:
 1 pose 10 msec.
 1 vertex mapped 5 µsec

POSITIONING ACCURACY (Meters)

Landmark Subpixel

distance(m) resolution (pixels)

1 0.3 0.1

10 0.01675573 0.00502672 0.00167557

30 0.0502672 0.01508016 0.00502672

100 0.16755733 0.0502672 0.01675573

300 0.502672 0.1508016 0.0502672

1000 1.67557333 0.502672 0.16755733

!" pixel resolution (radians)

0.00167557

Research Tasks: Ladybug2 datastreams are available for San Francisco area.
Camera is already calibrated for “pixel -> sphere” mapping. Select some widely
recognizable landmark vertices in this footage, and obtain GPS coords for them.
Write algo (ransac?) to recognize landmarks, then test “visual GPS” by reprocessing
existing datastream Logfile. Compare visual GPS position to satellite GPS position
already recorded with datastream.

Quantitate vertex mapping speed obtainable from a moving spherical camera pose.

Students: Pierre Bierre, teammates welcome
 pbierre@comcast.net

Point of Contact: Sebastian Thrun

