(CS223B Homework Assignment 1
Sebastian Thrun, Dan Maynes-Aminzade, Mitul Saha
¢s223b@gmail.com
Due Monday, January 23, 11:59 PM

Assignment Overview

This assignment is worth 10% of your total grade. It is graded out of a total of 100 points. It
consists of three problems: one programming problem, and two written problems.

What to Hand In

You will electronically submit the following items:

All of your source code for Problem 1. Please make an effort to submit neat, commented
code so that we can give you partial credit if your results are not good.

A README file containing instructions for compiling and running your source code for Problem
1. This file should be in plain ASCII text.

A WRITEUP file containing a description of your approach. State your methods for solving the
problem and explain what worked and didn’t work. Include the names and email addresses
of all of your group members. This file should be in plain ASCII text or PDF format.

An QUTPUT directory containing a series of 100 output images that have been produced by
your code, one for each source image. We will use these images to grade the correctness of
your solution.

An ANSWERS file containing the answers to the written portion of this assignment (Problems
2 and 3). Include the names and email addresses of all of your group members. This should
be in plain ASCII text or PDF format.

To submit your completed assignment, email a single ZIP or TAR archive containing all of the
above components to cs223b+submit@gmail.com. You must include all of the components; we will
not accept partial submissions.

1: Programming a Feature Detector (65 Points)

Getting Started

In this problem, you will be asked to identify cars on a road in a typical driving situation.
You will be given a data set of images taken from a car driving down a highway, and your code
will produce a monochromatic image in which each pixel is tagged as CAR (white) or NON-CAR
(black).

You are free to use Matlab, OpenCV, or any other computer vision libraries. In your write-up,
please list any library functions you used and describe what you used them for.

Files You Need

The images that you will be working with are in the directory



Sebastian Thrun, Dan Maynes-Aminzade, Mitul Saha
HW1 CS223b ¢s223b@gmail.com

/afs/cs.stanford/edu/class/cs223b/www/homework/hwl/
You can also find them on the web at
http://cs223b.stanford.edu/homework/hwl/

The source images are in JPG format and the labeled images are in PNG format. Both formats
can be read directly into Matlab or OpenCV.
There are two directories of images:

e The SOURCE directory contains the collection of 100 source images that your program will use
as input. The images are numbered in sequence from source00. jpg to source99. jpg.

e The LABELED directory contains 10 hand-labeled monochrome images corresponding to the
first 10 source images, numbered in sequence from labeled00.png to labeled09.png. You
can compare your results against these hand-labeled images to judge the correctness of your
solution. We do not provide hand-labeled images for the other 90 source images, but we will
examine your results on these images as well when grading your solution.

What Your Code Should Do

Given an input image, your code should produce an output image of the same pixel resolution.
All of the pixels in the output image should be either black or white, with white pixels representing
CAR and black pixels representing NON-CAR.

Run your code on each of the images in the SOURCE directory. For each source image sourceXX. jpg,
write out a corresponding output image in PNG format named outputXX.png. Note that your code
should produce PNG rather than JPG images; the lossy compression of JPG-formatted images will
result in pixels that are not pure black or pure white. Put all 100 of these output images in a
directory called OUTPUT and include them in your assignment submission.

Grading

We will grade your solution based on two metrics:

1. Pizel-by pizel comparison to hand-labeled image. We will compute the norm of the difference
between the output image that your code produces and the hand-labeled solution image. The
smaller this value, the better your score. In other words, your output image should differ
from the hand-labeled image in as few pixels as possible.

2. Documentation and approach. Because the first metric does not always accurately represent
the quality of your work (for example, it weights nearby cars more heavily than distant cars),
we reserve a portion of your grade based on more subjective factors. In particular, we will
consider how reasonable your approach is, the efficiency and correctness of your code, and
how well you document your solution.

2: Perspective Geometry (20 Points)

Consider a scene that contains 5 collinear features, A, B, C, D, and F, where collinearity is
defined in 3D coordinates. We know that under perspective projection, the projected features are
also collinear in the 2D image plane.



Sebastian Thrun, Dan Maynes-Aminzade, Mitul Saha
HW1 CS223b ¢s223b@gmail.com

(a) Suppose A, B, C, D, and E are all equidistant. Will the order of the projected points
(along the projected line) always be the same in the camera image? If yes, argue why this must be
the case. If no, provide a counterexample.

(b) Will the observed features also be equidistant in the image plane? If yes, argue why. If
not, argue why not.

(c) What are the implications of the previous answer for stereo vision? Specifically, suppose
we find five collinear features a, b, ¢, d, e in the left image, will they also be collinear in the right
image? If yes, argue why; if not, provide a counterexample.

(d) Suppose the projected points a, b, ¢, d, e are collinear in both stereo images. Can we expect
that the order is preserved? Again, argue the correctness or provide a counterexample.

3: Hough Transform (15 Points)

Suppose you use the Hough Line Transform (described in Section 5.2 textbook) to map the
edges of a regular planar hexagon in the (p, €) space. Assume the hexagon is centered at the origin.

(a) What will be the arrangement of the “peaks” in the (p, 6) space?
(b) How does the arrangement change when you rotate the hexagon about the origin?

(c) How does your answer in (a) compare with the answer for 6 lines all intersecting at the
origin?



