
Creating Full View Panoramic Image Mosaics and Environment Maps

Richard Szeliski and Heung-Yeung Shum

Microsoft Research

Abstract

This paper presents a novel approach to creating full view panoramic
mosaics from image sequences. Unlike current panoramic stitching
methods, which usually require pure horizontal camera panning,
our system does not require any controlled motions or constraints
on how the images are taken (as long as there is no strong motion
parallax). For example, images taken from a hand-held digital cam-
era can be stitched seamlessly into panoramic mosaics. Because we
represent our image mosaics using a set of transforms, there are no
singularity problems such as those existing at the top and bottom
of cylindrical or spherical maps. Our algorithm is fast and robust
because it directly recovers 3D rotations instead of general 8 pa-
rameter planar perspective transforms. Methods to recover camera
focal length are also presented. We also present an algorithm for
efficiently extracting environment maps from our image mosaics.
By mapping the mosaic onto an artibrary texture-mapped polyhe-
dron surrounding the origin, we can explore the virtual environment
using standard 3D graphics viewers and hardware without requiring
special-purpose players.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation - Viewing Algorithms; I.3.4 [Image
Processing]: Enhancement - Registration.

Additional Keywords: full-view panoramic image mosaics, en-
vironment mapping, virtual environments, image-based rendering.

1 Introduction

Image-based rendering is a popular way to simulate a visually rich
tele-presence or virtual reality experience. Instead of building and
rendering a complete 3D model of the environment, a collection of
images is used to render the scene while supporting virtual cam-
era motion. For example, a single cylindrical image surrounding
the viewer enables the user to pan and zoom inside an environment
created from real images [4, 13]. More powerful image-based ren-
dering systems can be built by adding a depth map to the image
[3, 13], or using a larger collection of images [3, 6, 11].

In this paper, we focus on image-based rendering systems without
any depth information, i.e., those which only support user panning,
rotation, and zoom. Most of the commercial products based on this
idea (such as QuickTime VR [22] and Surround Video [23]) use
cylindrical images with a limited vertical field of view, although
newer systems support full spherical maps (e.g., PhotoBubble [24],
Infinite Pictures [25], and RealVR [26]).

A number of techniques have been developed for capturing
panoramic images of real-world scenes (for references on computer-
generated environment maps, see [7]). One way is to record an image
onto a long film strip using a panoramic camera to directly capture a
cylindrical panoramic image [14]. Another way is to use a lens with
a very large field of view such as a fisheye lens. Mirrored pyramids
and parabolic mirrors can also be used to directly capture panoramic
images [27, 28].

A less hardware-intensive method for constructing full view
panoramas is to take many regular photographic or video images
in order to cover the whole viewing space. These images must then
be aligned and composited into complete panoramic images using
an image mosaic or “stitching” algorithm [12, 17, 9, 4, 13, 18]. Most
stitching systems require a carefully controlled camera motion (pure
pan), and only produce cylindrical images [4, 13]. In this paper, we
show how uncontrolled 3D camera rotation can be used.

The case of general camera rotation has been studied previously
[12, 9, 18], using an 8-parameter planar perspective motion model.
By contrast, our algorithm uses a 3-parameter rotational motion
model, which is more robust since it has fewer unknowns. Since this
algorithm requires knowing the camera’s focal length, we develop
a method for computing an initial focal length estimate from a set
of 8-parameter perspective registrations. We also investigate how
to close the “gap” (or “overlap”) due to accumulated registration
errors after a complete panoramic sequence has been assembled.
To demonstrate the advantages of our algorithm, we apply it to a
sequence of images taken with a handheld digital camera.

In our work, we represent our mosaic by a set of transformations.
Each transformation corresponds to one image frame in the input
image sequence and represents the mapping between image pixels
and viewing directions in the world, i.e., it represents thecamera
matrix [5]. During the stitching process, our approach makes no
commitment to the final output representation (e.g. spherical or
cylindrical), which allows us to avoid the singularities associated
with such representations.

Once a mosaic has been constructed, it can, of course, be mapped
into cylindrical or spherical coordinates, and displayed using a spe-
cial purpose viewer [4]. In this paper, we argue that such special-
ized representations are not necessary, and represent just a particular
choice of geometry and texture coordinate embedding. Instead, we
show how to convert our mosaic to an environment map [7], i.e., how
to map our mosaic ontoany texture-mapped polyhedron surround-
ing the origin. This allows us to use standard 3D graphics APIs and
3D model formats, and to use 3D graphics accelerators for texture
mapping.

The remainder of our paper is structured as follows. Sections
2 and 3 review our algorithms for panoramic mosaic construction
using cylindrical coordinates and general perspective transforms.
Section 4 describes our novel direct rotation recovery algorithm.
Section 5 presents our technique for estimating the focal length from
perspective registrations. Section 6 discusses how to eliminate the
“gap” in a panorama due to accumulated registration errors. Section
7 presents our algorithm for projecting our panoramas onto texture-
mapped 3D models (environment maps). We close with a discussion
and a description of ongoing and future work.

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

2 Cylindrical and spherical panoramas

Cylindrical panoramas are commonly used because of their ease
of construction. To build a cylindrical panorama, a sequence of
images is taken by a camera mounted on a leveled tripod. If the
camera focal length or field of view is known, each perspective
image can be warped into cylindrical coordinates. Figure 1a shows
two overlapping cylindrical images—notice how horizontal lines
become curved.

To build a cylindrical panorama, we map world coordinatesp =
(X, Y, Z) to 2D cylindrical screen coordinates(θ, v) using

θ = tan−1(X/Z), v = Y/
√

X2 + Z2 (1)

whereθ is the panning angle andv is the scanline [18]. Similarly,
we can map world coordinates into 2D spherical coordinates(θ, φ)
using

θ = tan−1(X/Z), φ = tan−1(Y/
√

X2 + Z2). (2)

Once we have warped each input image, constructing the
panoramic mosaics becomes a pure translation problem. Ideally, to
build a cylindrical or spherical panorama from a horizontal panning
sequence, only the unknown panning angles need to be recovered.
In practice, small vertical translations are needed to compensate for
vertical jitter and optical twist. Therefore, both a horizontal trans-
lation tx and a vertical translationty are estimated for each input
image.

To recover the translational motion, we estimate the incremen-
tal translationδt = (δtx, δty) by minimizing the intensity error
between two images,

E(δt) =
∑

i

[I1(x′
i + δt)− I0(xi)]2, (3)

wherexi = (xi, yi) andx′
i = (x′

i, y
′
i) = (xi + tx, yi + ty) are

corresponding points in the two images, andt = (tx, ty) is the
global translational motion field which is the same for all pixels [2].

After a first order Taylor series expansion, the above equation
becomes

E(δt) ≈
∑

i

[gT
i δt + ei]2 (4)

whereei = I1(x′
i)−I0(xi) is the current intensity or color error, and

gT
i = ∇I1(x′

i) is the image gradient ofI1 atx′
i. This minimization

problem has a simple least-squares solution,(∑
i

gigT
i

)
δt = −

(∑
i

eigi

)
. (5)

Figure 1b shows a portion of a cylindrical panoramic mosaic built
using this simple translational alignment technique. To handle larger
initial displacements, we use a hierarchical coarse-to-fine optimiza-
tion scheme [2]. To reduce discontinuities in intensity and color
between the images being composited, we apply a simplefeather-
ingalgorithm, i.e., we weight the pixels in each image proportionally
to their distance to the edge (or more precisely, their distance to the
nearest invisible pixel) [18]. Once registration is finished, we can
clip the ends (and optionally the top and bottom), and write out a
single panoramic image.

Creating panoramas in cylindrical or spherical coordinates has
several limitations. First, it can only handle the simple case of
pure panning motion. Second, even though it is possible to convert
an image to 2D spherical or cylindrical coordinates for a known
tilting angle, ill-sampling at north pole and south pole causes big
registration errors. Third, it requires knowing the focal length (or

equivalently, field of view). While focal length can be carefully
calibrated in the lab[19, 16], estimating the focal length of lens by
registering two or more images is not very accurate, as we will
discuss in section 5.

3 Perspective (8-parameter) panoramas

To overcome these limitations, several authors have suggested using
full planar perspective motion models [12, 9, 18]. The planar per-
spective transform warps an image into another using 8 parameters,

x′ ∼Mx =

[
m0 m1 m2
m3 m4 m5
m6 m7 1

][
x
y
1

]
, (6)

wherex = (x, y, 1) andx′ = (x′, y′, 1) are homogeneous or pro-
jective coordinates, and∼ indicates equality up to scale. This equa-
tion can be re-written as

x′ =
m0x + m1y + m2

m6x + m7y + 1
(7)

y′ =
m3x + m4y + m5

m6x + m7y + 1
(8)

(in translational motion, only the two parametersm2 andm5 are
used).

To recover the 8 paramters, we iteratively update the transform
matrix using

M← (I + D)M (9)

where

D =

[
d0 d1 d2
d3 d4 d5
d6 d7 0

]
. (10)

Resampling imageI1 with the new transformationx′ ∼ (I +
D)Mx is the same as warping the resampled imageĨ1(xi) =
I1(x′

i) by x′′ ∼ (I + D)x, i.e.,

x′′ =
(1 + d0)x + d1y + d2

d6x + d7y + 1
(11)

y′′ =
d3x + (1 + d4)y + d5

d6x + d7y + 1
. (12)

Again, we wish to minimize

E(d) =
∑

i

[Ĩ1(x′′
i)− I0(xi)]2 (13)

≈
∑

i

[gT
i JT

i d + ei]2 (14)

whered = (d0, . . . , d7) is the incremental update parameter, and
Ji = Jd(xi), where

Jd(x) =
∂x′′

∂d
=

[
x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2

]T

(15)
is the Jacobian of the resampled point coordinatex′′

i with respect
to d. The entries in the Jacobian correspond to the optical flow
induced by the instantaneous motion of a plane in 3D [2]. The least-
squares minimization problem (14) is solved usingnormal equations
analogous to (5)

Ad = −b, (16)

where
A =

∑
i

JigigT
i JT

i (17)

is theHessian, and
b =

∑
i

eiJigi (18)

is theaccumulated gradientor residual.
The 8-parameter perspective transformation recovery algorithm

works well provided that initial estimates of the correct transforma-
tion are close enough. However, since the motion model contains
more free parameters than necessary, it suffers from slow conver-
gence and sometimes gets stuck in local minima. For this reason,
we prefer to use the 3-parameter rotational model described next.

4 Rotational (3-parameter) panoramas

For a camera centered at the origin, the relationship between a 3D
point p = (X, Y, Z) and its image coordinatesx = (x, y, 1) can
be described by

x ∼ TVRp, (19)

where

T =

[
1 0 cx

0 1 cy

0 0 1

]
,V =

[
f 0 0
0 f 0
0 0 1

]
, andR =

[
rij

]
are the image plane translation, focal length scaling, and 3D rota-
tion matrices. For simplicity of notation, we assume that pixels are
numbered so that the origin is at the image center, i.e.,cx = cy = 0,
allowing us to dispense withT (in practice, mislocating the image
center does not seem to affect mosaic registration algorithms very
much). The 3D direction corresponding to a screen pixelx is given
by p ∼ R−1V−1x.

For a camera rotating around its center of projection, the mapping
(perspective projection) between two imagesk and l is therefore
given by

M ∼ VkRkR
−1
l V−1

l (20)

where each image is represented byVkRk, i.e., a focal length and
a 3D rotation.

Assume for now that the focal length is known and is the same
for all images, i.e,Vk = V. To recover the rotation, we perform
an incremental update toRk based on the angular velocityΩ =
(ωx, ωy, ωz),

M← VR̂(Ω)RkR
−1
l V−1 (21)

where the incremental rotation matrix̂R(Ω) is given by Rodriguez’s
formula [1],

R̂(n̂, θ) = I + sin θX(n̂) + (1− cos θ)X(n̂)2 (22)

with θ = ‖Ω‖, n̂ = Ω/θ, and

X(Ω) =

[
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]

is the cross product operator. Keeping only terms linear inΩ, we
get

M′ ≈ V[I + X(Ω)]RkR
−1
l V−1 = (I + DΩ)M, (23)

where

DΩ = VX(Ω)V−1 =

[
0 −ωz fωy

ωz 0 −fωx

−ωy/f ωx/f 0

]

is the deformation matrix which plays the same role asD in (9).
Computing the Jacobian of the entries inDΩ with respect toΩ

and applying the chain rule, we obtain the new Jacobian,

JΩ =
∂x′′

∂Ω
=

∂x′′

∂d
∂d
∂Ω

=

[
−xy/f f + x2/f −y
−f − y2/f xy/f x

]T

.

(24)
This Jacobian is then plugged into the previous minimization
pipeline to estimate the incremental rotation vector(ωx ωy ωz),
after whichRk can be updated using (21).

Figure 2 shows how our method can be used to register four
images with arbitrary (non-panning) rotation. Compared to the 8-
parameter perspective model, it is much easier and more intuitive to
interactively adjust images using the 3-parameter rotational model.

5 Estimating the focal length

In order to apply our 3D rotation technique, we must first obtain
an estimate for the camera’s focal length. A convenient way to
obtain this estimate to deduce the value from one or more perspective
transforms computed using the 8-parameter algorithm. Expanding
theV1RV−1

0 formulation, we have

M =

[
m0 m1 m2
m3 m4 m5
m6 m7 1

]
∼
[

r00 r01 r02f0
r10 r11 r12f0

r20/f1 r21/f1 r22f0/f1

]
(25)

whereR = [rij].
In order to estimate focal lengthsf0 andf1, we observe that the

first two rows (columns) ofR must have the same norm and be
orthogonal (even if the matrix is scaled), i.e.,

m0
2 + m1

2 + m2
2/f0

2 = m3
2 + m4

2 + m5
2/f0

2 (26)

m0m3 + m1m4 + m2m5/f0
2 = 0. (27)

From this, we can compute the estimates

f0
2 =

√
m02 + m12 −m32 −m42

m52 −m22 if m5 6= m2

or

f0
2 = −m0m3 + m1m4

m2m5
if m5 6= 0 andm2 6= 0.

Similar result can be obtained forf1 as well. If the focal length is
fixed for two images, we can take the geometric mean off0 andf1
as the estimated focal lengthf =

√
f1f0. When multiple estimates

of f are available, the median value is used as the final estimate.
Alternative techniques for estimating the focal length are pre-

sented in [8, 16, 13, 10]. The first technique [8] uses more than two
frames and assumes a more general camera model (e.g., unknown
optical center and aspect ratio). The other techniques either assume
known rotation angles or use a complete panorama (similar to the
technique described in section 6).

Once an initial set off estimates is available, we can improve
these estimates as part of the image registration process, using the
same kind of least squares approach as for the rotation [15].

6 Closing the gap in a panorama

Even with our best algorithms for recovering rotations and focal
length, when a complete panoramic sequence is stitched together,
there will invariably be either a gap or an overlap (due to accumu-
lated errors in the rotation estimates). We solve this problem by

registering the same image at both the beginning and the end of the
sequence.

The difference in the rotation matrices (actually, their quotient)
directly tells us the amount of misregistration. This error can be
distributed evenly across the whole sequence by converting the error
in rotation into a quaternion, and dividing the quaternion by the
number of images in the sequence (for lack of a better guess).

We can also update the estimated focal length based on the amount
of misregistration. To do this, we first convert the quaternion de-
scribing the misregistration into agap angleθg. We can then update
the focal length using the equation

f ′ =
360◦ − θg

360◦ ∗ f. (28)

Figure 3a shows the end of registered image sequence and the
first image. There is a big gap between the last image and the first
which are in fact the same image. The gap is32◦ because the wrong
estimate of focal length (510) was used. Figure 3b shows the reg-
istration after closing the gap with the correct focal length (468).
Notice that both mosaics show very little visual misregistration (ex-
cept at the gap), yet Figure 3a has been computed using a focal
length which has 9% error.

Related approaches have been developed by [13, 16, 10] to solve
the focal length estimation problem using pure panning motion and
cylindrical images. In recent work, we have developed an alternative
approach to removing gaps and overlaps which works for arbitrary
image sequences (see Section 8).

7 Environment map construction

Once we have constructed a complete panoramic mosaic, we need
to convert the set of input images and associated transforms into one
or more images which can be quickly rendered or viewed.

A traditional way to do this is to choose either a cylindrical or
spherical map (Section 2). When being used as an environment
map, such a representation is sometimes called a latitude-longitude
projection [7]. The color associated with each pixel is computed
by first converting the pixel address to a 3D ray, and then mapping
this ray into each input image through our known transformation.
The colors picked up from each image are then blended using the
weighting function (feathering) described earlier. For example, we
can convert our rotational panorama to spherical panorama using the
following algorithm:

1. for each pixel (θ, φ) in the spherical map, compute its corre-
sponding 3D position on unit spherep = (X, Y, Z) where
X = cos(φ)sin(θ), Y = sin(φ), andZ = cos(φ)cos(θ);

2. for eachp, determine its mapping into each imagek using
x ∼ TkVkRkp;

3. form a composite (blended) image from the above warped im-
ages.

Unfortunately, such a map requires a specialized viewer, and thus
cannot take advantage of any hardware texture-mapping accelera-
tion (without approximating the cylinder’s or sphere’s shape with
a polyhedron, which would introduce distortions into the render-
ing). For true full-view panoramas, spherical maps also introduce a
distortion around each pole.

As an alternative, we propose the use of traditional texture-
mapped models, i.e., environment maps [7]. The shape of the model
and the embedding of each face into texture space are left up to the
user. This choice can range from something as simple as a cube
with six separate texture maps [7], to something as complicated as
a subdivided dodecahedron, or even a latitude-longitude tesselated

globe.1 This choice will depend on the characteristics of the render-
ing hardware and the desired quality (e.g., minimizing distortions
or local changes in pixel size), and on external considerations such
as the ease of painting on the resulting texture maps (since some
embeddings may leave gaps in the texture map).

In this section, we describe how to efficiently compute texture
map color values for any geometry and choice of texture map co-
ordinates. A generalization of this algorithm can be used to project
a collection of images onto an arbitrary model, e.g., non-convex
models which do not surround the viewer.

We assume that the object model is a triangulated surface, i.e.,
a collection of triangles and vertices, where each vertex is tagged
with its 3D (X, Y, Z) coordinates and(u, v) texture coordinates
(faces may be assigned to different texture maps). We restrict the
model to triangular faces in order to obtain a simple, closed-form
solution (projective map, potentially different for each triangle) be-
tween texture coordinates and image coordinates. The output of our
algorithm is a set of colored texture maps, with undefined (invisible)
pixels flagged (e.g., if an alpha channel is used, thenα← 0).

Our algorithm consists of the following four steps:

1. paint each triangle in(u, v) space a unique color;

2. for each triangle, determine its(u, v, 1) → (X, Y, Z) map-
ping;

3. for each triangle, form a composite (blended) image;

4. paint the composite image into the final texture map using the
color values computed in step 1 as a stencil.

These four steps are described in more detail below.
The pseudocoloring (triangle painting) step uses an auxilliary

buffer the same size as the texture map. We use an RGB image,
which means that224 colors are available. After the initial coloring,
we grow the colors into invisible regions using a simple dilation
operation, i.e., iteratively replacing invisible pixels with one of their
visible neighbor pseudocolors. This operation is performed in order
to eliminate small gaps in the texture map, and to support filtering
operations such as bilinear texture mapping and MIP mapping [21].
For example, when using a six-sided cube, we set the(u, v) coordi-
nates of each square vertex to be slightly inside the margins of the
texture map. Thus, each texture map covers a little more region than
it needs to, but operation such a texture filtering and MIP mapping
can be performed without worrying about edge effects.

In the second step, we compute the(u, v, 1)→ (X, Y, Z) map-
ping for each triangleT by finding the3 × 3 matrix MT which
satisfies

ui = MT pi

for each of the three triangle verticesi. Thus,MT = UP−1, where
U = [u0|u1|u2] andP = [p0|p1|p2] are formed by concatenating
the ui andpi 3-vectors. This mapping is essentially a mapping
from 3D directions in space (since the cameras are all at the origin)
to (u, v) coordinates.

In the third step, we compute a bounding box around each tri-
angle in(u, v) space and enlarge it slightly (by the same amount
as the dilation in step 1). We then form a composite image by
blending all of the input imagesj according to the transformation
u = MT R−1

k V−1
k x. This is a full, 8-parameter perspective trans-

formation. It isnot the same as the 6-parameter affine map which
would be obtained by simply projecting a triangle’s vertices into the
image, and then mapping these 2D image coordinates into 2D tex-
ture space (in essence ignoring the foreshortening in the projection

1This latter representation is equivalent to a spherical map in the limit as
the globe facets become infinitessimally small. The important difference is
that even with large facets, an exact rendering can be obtained with regular
texture-mapping algorithms and hardware.

onto the 3D model). The error in applying this naive but erroneous
method to large texture map facets (e.g., those of a simple unrefined
cube) would be quite large.

In the fourth step, we find the pseudocolor associated with each
pixel inside the composited patch, and paint the composited color
into the texture map if the pseudocolor matches the face id.

Our algorithm can also be used to project a collection of images
onto an arbitrary object, i.e., to do true inverse texture mapping,
by extending our algorithm to handle occlusions. To do this, we
simply paint the pseudocolored polyhedral model into each input
image using a z-buffering algorithm (this is called anitem bufferin
ray tracing [20]). When compositing the image for each face, we
then check to see which pixels match the desired pseudocolor, and
set those which do not match to be invisible (i.e., not to contribute
to the final composite).

Figure 4 shows the results of mapping a panoramic mosaic onto
a longitude-latitude tesselated globe. The white triangles at the top
are the parts of the texture map not covered in the 3D tesselated
globe model (due to triangular elements at the poles). Figures 5–7
show the results of mapping three different panoramic mosaics onto
cubical environment maps. We can see that the mosaics are of very
high quality, and also get a good sense for the extent of viewing
sphere covered by these full-view mosaics. Note that Figure 5 uses
images taken with a hand-held digital camera.

Once the texture-mapped 3D models have been constructed, they
can be rendered directly with a standard 3D graphics system. For
our work, we are currently using a simple 3D viewer written on
top of the Direct3D API running on a personal computer with no
hardware graphics acceleration.

8 Discussion

In this paper, we have developed some new techniques for build-
ing full view panoramic image mosaics. Our system does not place
constraints on how the input images are taken, and allows the im-
ages to be taken with hand held cameras. By taking many overlap-
ping images, we can significantly increase the field of view of the
constructed panorama and remove the need for expensive fisheye
lenses. Our method is accurate and robust because we estimate only
3 unknowns in the rotation matrix instead of 8 parameters in the
general perspective transforms. Our method greatly increases ac-
curacy, flexibility, and ease of use of previous techniques. We have
also developed techniques for estimating the focal length from an
image sequence, and for recovering from accumulated registration
errors when a full panoramic mosaic is completed.

When building an image mosaic from a long sequence of im-
ages, we have to deal with error accumulation problems. In this
paper we have presented a “gap closing” technique which updates
the focal length and rotation matrices after a complete panorama is
constructed. More recently we have developed a new method based
on block adjustmentwhich simultaneously adjusts all rotation ma-
trices and focal lengths so that the sum of registration errors between
all matching pairs of images is minimized [15].

In theory, panoramas can only be constructed if all images are
taken by a camera whose optical centers never moves. In practice,
this depends on the amount of camera translation relative to the
nearest objects in front of the camera. With our 3-D rotation mo-
saicing method, we have demonstrated that images taken by a hand
held digital camera can be seamlessly stitched. To compensate for
local misregistration caused by larger amounts of motion parallax
(e.g., camera translation), we have recently developed adeghosting
technique [15]. We divide each image into small patches and com-
pute patch-based alignments. Each image is then locally warped
so that the overall mosaic does not contain visible ghosting. This
deghosting method has been used to build the image mosaic of the
Space Shuttle flight deck (Figure 8) from a sequence of images (with

significant motion parallax) taken by an astronant with a hand-held
camera.

We have also presented an algorithm for extracting texture maps
from the image mosaics. We can map image mosaics onto any 3-
D model and exploit 3-D graphics hardware and APIs. Compared
with using special purpose players (e.g., cylindrical and spherical
viewers), our inverse texture mapping approach can be much more
easily integrated as backdrops for virtual worlds and games. In the
future, we would like to explore how to extract the three-dimensional
world descriptions from full-view panoramic image mosaics.

References

[1] N. Ayache. Vision Stéréoscopique et Perception Multisen-
sorielle. InterEditions., Paris, 1989.

[2] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hier-
archical model-based motion estimation. InSecond European
Conference on Computer Vision (ECCV’92), pages 237–252,
Santa Margherita Liguere, Italy, May 1992. Springer-Verlag.

[3] S. Chen and L. Williams. View interpolation for image syn-
thesis.Computer Graphics (SIGGRAPH’93), pages 279–288,
August 1993.

[4] S. E. Chen. QuickTime VR – an image-based approach to
virtual environment navigation.Computer Graphics (SIG-
GRAPH’95), pages 29–38, August 1995.

[5] O. Faugeras.Three-dimensional computer vision: A geometric
viewpoint. MIT Press, Cambridge, Massachusetts, 1993.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. InComputer Graphics Proceedings, Annual
Conference Series, pages 43–54, Proc. SIGGRAPH’96 (New
Orleans), August 1996. ACM SIGGRAPH.

[7] N. Greene. Environment mapping and other applications of
world projections. IEEE Computer Graphics and Applica-
tions, 6(11):21–29, November 1986.

[8] R. I. Hartley. Self-calibration from multiple views of a rotating
camera. InThird European Conference on Computer Vision
(ECCV’94), volume 1, pages 471–478, Stockholm, Sweden,
May 1994. Springer-Verlag.

[9] M. Irani, P. Anandan, and S. Hsu. Mosaic based representa-
tions of video sequences and their applications. InFifth In-
ternational Conference on Computer Vision (ICCV’95), pages
605–611, Cambridge, Massachusetts, June 1995.

[10] S. B. Kang and R Weiss. Characterization of errors in com-
positing panoramic images. Technical Report 96/2, Digital
Equipment Corporation, Cambridge Research Lab, June 1996.

[11] M. Levoy and P. Hanrahan. Light field rendering. InComputer
Graphics Proceedings, Annual Conference Series, pages 31–
42, Proc. SIGGRAPH’96 (New Orleans), August 1996. ACM
SIGGRAPH.

[12] S. Mann and R. W. Picard. Virtual bellows: Constructing
high-quality images from video. InFirst IEEE International
Conference on Image Processing (ICIP-94), volume I, pages
363–367, Austin, Texas, November 1994.

[13] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system.Computer Graphics (SIG-
GRAPH’95), pages 39–46, August 1995.

[14] J. Meehan.Panoramic Photography. Watson-Guptill, 1990.

[15] H.-Y. Shum and R. Szeliski. Construction and refinement of
panoramic mosaics with global and local alignment. Submitted
for review, April 1997.

[16] G. Stein. Accurate internal camera calibration using rotation,
with analysis of sources of error. InFifth International Con-
ference on Computer Vision (ICCV’95), pages 230–236, Cam-
bridge, Massachusetts, June 1995.

[17] R. Szeliski. Image mosaicing for tele-reality applications.
In IEEE Workshop on Applications of Computer Vision
(WACV’94), pages 44–53, Sarasota, Florida, December 1994.
IEEE Computer Society.

[18] R. Szeliski. Video mosaics for virtual environments.IEEE
Computer Graphics and Applications, pages 22–30, March
1996.

[19] R. Y. Tsai. A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf TV
cameras and lenses.IEEE Journal of Robotics and Automation,
RA-3(4):323–344, August 1987.

[20] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved
computational methods for ray tracing.ACM Transactions
on Graphics, 3(1):52069, January 1984.

[21] L. Williams. Pyramidal parametrics.Computer Graphics,
17(3):1–11, July 1983.

[22] http://qtvr.quicktime.apple.com.

[23] http://www.bdiamon.com.

[24] http://www.omniview.com.

[25] http://www.smoothmove.com.

[26] http://www.rlspace.com.

[27] http://www.behere.com.

[28] http://www.cs.columbia.edu/cave/omnicam.

(a)

(b)

Figure 1: Construction of a cylindrical panorama: (a) two warped
images; (b) part of cylindrical panorama composited from a se-
quence of images.

Figure 2: 3D rotation registration of four images taken with a hand-
held camera.

(a) (b)

Figure 3: Gap closing after sequentially registering 24 images: (a) a gap is visible when the focal length is wrong (f = 510); (b) no gap is
visible for the correct focal length (f = 468).

Figure 4: Tessellated spherical panorama covering the north pole (constructed from 54 images). The white triangles at the top are the parts of
the texture map not covered in the 3D tesselated globe model (due to triangular elements at the poles).

Figure 5: Cubical texture-mapped model of conference room (from 75 images taken with a hand-held digital camera).

Figure 6: Cubical texture-mapped model of lobby (from 54 images).

Figure 7: Cubical texture-mapped model of hallway and sitting area (from 36 images).

Figure 8: Panorama of Space Shuttle flight deck from 14 images taken with a hand-held camera (usingdeghostingtechnique).

