The OpenCV Library:
Computing Optical Flow

David Stavens
Stanford Artificial Intelligence Lab

I received some requests...

O ...on what to cover tonight:

O “Perhaps you could do one of the 14
projects in the course? In front of us.
In one hour.”

-- Anonymous

Tonight we’ll code:

¥ < ol oy A x

A fully functional sparse optical flow algorithm!

Plan

[0 OpenCV Basics
B What is it?
B How do we get started?

O Feature Finding and Optical Flow
B A brief mathematical discussion.

O OpenCV Implementation of Optical Flow

m Step by step.

What is OpenCV? intel.

O Really four libraries in one:

m “"CV” - Computer Vision Algorithms
O All the vision algorithms.

B “"CVAUX" - Experimental/Beta
O Useful gems :-)

B “"CXCORE” - Linear Algebra
O Raw matrix support, etc.

B “HIGHGUI” - Media/Window Handling
O Read/write AVIs, window displays, etc.

O Created/Maintained by Intel

Installing OpenCV

O Download from:
B http://sourceforge.net/projects/opencvlibrary/

O Be sure to get the August 2004 release:
B “Beta 4” for Windows XP/2000
B “Beta 4” or “0.9.6" for Linux

O Windows version comes with an installer.

O Linux:
B gunzip opencv-0.9.6.tar.gz; tar —xvf opencv-0.9.6.tar
B cd opencv-0.9.6; ./configure --prefix=/usr; make
B make install [as root]

e g

%

Baschor iusng bnfwrarces

T

Warrer Ll
[T —
Trnat Wi da Brvies

Tell Visual Studio where the includes are.

O O fes Dowd DAl sy Dok gndes
P-n-cad Bl -8
B Sk e - Cpmny Bt O 8 %

Ot ¥ st CA2100 Pragerty Pagen

gt . %
[=
i
Do B o
e

Tell Visual Studio to link against cxcore.lib, cv.lib, and highgui.lib.

M7

3t Blose|

Tell Visual Studio to disable managed extensions.

Plan
v

v
v

O Feature Finding and Optical Flow
B A brief mathematical discussion.

O OpenCV Implementation of Optical Flow
B Step by step.

Optical Flow: Overview

O Given a set of points in an image, find
those same points in another image.

O Or, given point [u,, u,]" in image I,
find the point [u, + 5 u,+9,J"in
image I, that minimizes &:

x T Wy U +W

5,,5,) = Z Z(I (%, Y) =1, (x+5,,y+5,))

X=Uy =W, y=Uy =W,

O (the Z/w’s are needed due to the aperture problem)

Optical Flow: Utility

O Tracking points (“features”) across multiple
images is a fundamental operation in many
computer vision applications:

B To find an object from one image in another.
B To determine how an object/camera moved.
B To resolve depth from a single camera.

O ...or stereo.

O ~ 75% of this year’s CS 223b projects.

O But what are good features to track?

Finding Features: Overview

O Intuitively, a good feature needs at least:
B Texture (or ambiguity in tracking)
B Corner (or aperture problem)

O But what does this mean formally?

s (4 2 9’1 | O A good feature has big
neighborhood OX neighborhood 6X8y eigenvalues, imp”es:
= ol 3 (a| JZ B Texture
neighbarhood OXOY neigiiborhood \ OY ® Corner

O Shi/Tomasi. Intuitive result really part of motion equation.
High eigenvalues imply reliable solvability. Nice!

Plan

v
v

0 OpenCV Implementation of Optical Flow
B Step by step.

So now let’s code it!

O Beauty of OpenCV:
B All of the Above = Two Function Calls
B Plus some support code :-)

O Let’s step through the pieces.

O These slides provide the high-level.
® Full implementation with extensive comments:
O http://robotics.stanford.edu/~dstavens/cs223b

Step 1: Open Input Video

CvCapture *input_video =
cvCaptureFromFile(“filename.avi”);

O Failure modes:
B The file doesn’t exist.

B The AVI uses a codec OpenCV can't read.
O Codecs like MJPEG and Cinepak are good.
O DV, in particular, is bad.

Step 2: Get A Video Frame

cvQueryFrame(input_video);

O This is a hack so that we can look at
the internals of the AVI. OpenCV
doesn’t allow us to do that correctly
unless we get a video frame first.

Step 3: Read AVI Properties

CvSize frame_size;
frame_size.height =

cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_HEIGHT);

[0 Similar construction for getting the
width and the number of frames.

B See the handout.

Step 4: Create a Window

cvNamedWindow(“Optical Flow”,
CV_WINDOW_AUTOSIZE);

0 We will put our output here for
visualization and debugging.

Step 5: Loop Through Frames

O Go to frame N:
cvSetCaptureProperty(input_video,
CV_CAP_PROP_POS_FRAMES, N);

O Get frame N:
IplImage *frame = cvQueryFrame(input_video);
B Important: cvQueryFrame always returns a
pointer to the same location in memory.

10

Step 6: Convert/Allocate

O Convert input frame to 8-bit mono:
IplImage *framel =

cvCreateImage(cvSize(width, height),
IPL_DEPTH_8U, 1);

cvConvertlmage(frame, framel);

OO0 Actually need third argument to
conversion: CV_CVTIMG_FLIP.

Step 7: Run Shi and Tomasi

CvPoint2D32f framel_features[N];

cvGoodFeaturesToTrack(
framel, eig_image, temp_image,
framel_features, &N, .01, .01, NULL);

[0 Allocate eig,temp as in handout.

O On return framel features is full and
N is the number of features found.

11

Step 8: Run Optical Flow

char optical_flow_found_feature[];
float optical_flow_feature_error[];
CvTermCriteria term =

cvTermCriteria(CV_TERMCRIT_ITER |
CV_TERMCRIT_EPS, 20, .3);

cvCalcOpticalFlowPyrLK(...);
B 13 arguments total. All of the above.
O Both frames, both feature arrays, etc.
B See full implementation in handout.

Step 9: Visualize the Output

CvPoint p, q;
px=1;py=1,9x=2;q9y =2
CvScalar line_color;

line_color = CV_RGB(255, 0, 0);
int line_thickness = 1;

cvLine(framel, p,q, line_color, line_thickness, CV_AA, 0);
cvShowImage(“Optical Flow”, framel);

O CV_AA means draw the line antialiased.
O O means there are no fractional bits.

12

Step 10: Make an AVI output

CvVideoWriter *video_writer =
cvCreateVideoWriter(“output.avi”,
-1, frames_per_second, cvSize(w,h));

O (M“-1" pops up a nice GUI.)

cvWriteFrame(video_writer, frame);
m Just like cvShowImage(window, frame);

cvReleaseVideoWriter(&video_writer);

Let’s watch the result:

(The Stanford Roadrunner Ro

13

Stavens, Lookingbill, Lieb, Thrun; C5223b2004; ICRA 2005

A few closing thoughts...

O I've really described the lowest level.

O Your projects will begin with code like this and then
you’'ll implement something that’s not in OpenCV.

O OpenCV is good for non-vision things too.

O Feel free ask questions!
B dstavens@robotics.stanford.edu or Gates 226

O Good luck!! 223b projects are fun :-)

14

C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp 1

/* —--Sparse Optical Flow Demo Program--
* Written by David Stavens (dstavens@robotics.stanford.edu)
*/

#include <stdio.h>

#include <cv.h>

#include <highgui.h>

#include <math.h>

static const double pi = 3.14159265358979323846;

inline static double square(int a)

{
return a * a;
}
/* This is just an inline that allocates images. | did this to reduce clutter in the
* actual computer vision algorithmic code. Basically it allocates the requested image
* unless that image is already non-NULL. It always leaves a non-NULL image as-is even

* 1f that image"s size, depth, and/or channels are different than the request.
*/
inline static void allocateOnDemand(IplImage **img, CvSize size, int depth, int channels ¢«

)

{
if (*img '= NULL) return;
*img = cvCreatelmage(size, depth, channels);
if (*img == NULL)
{
fprintf(stderr, "Error: Couldn®"t allocate image. Out of memory?\n");
exit(-1);
}
}
int main(void)
{

/* Create an object that decodes the input video stream. */
CvCapture *input_video = cvCaptureFromFile(

"C:\\Documents and Settings\\David Stavens\\Desktop\\223B-Demo\\optical_ flow_inputw
.avi”

if (input_video == NULL)
{

/* Either the video didn"t exist OR it uses a codec OpenCV
* doesn"t support.

*/
fprintf(stderr, "Error: Can"t open video.\n");
return -1;

}

/* This is a hack. |If we don"t call this first then getting capture
* properties (below) won®"t work right. This is an OpenCV bug. We
* ignore the return value here. But it"s actually a video frame.
*/

cvQueryFrame(input_video);

/* Read the video"s frame size out of the AVI. */
CvSize frame_size;
frame_size.height =
(int) cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_HEIGHT);
frame_size.width =
(int) cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_WIDTH);

/* Determine the number of frames in the AVI. */

long number_of_frames;

/* Go to the end of the AVl (ie: the fraction is "1") */
cvSetCaptureProperty(input_video, CV_CAP_PROP_POS AVI_RATIO, 1.);
/* Now that we"re at the end, read the AVI position in frames */

C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp

number_of_frames = (int) cvGetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES);
/* Return to the beginning */
cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES, 0.);

/* Create three windows called "Frame N, "Frame N+1", and "Optical Flow"

* for visualizing the output. Have those windows automatically change their
* size to match the output.
*/

cvNamedWindow(*'Optical Flow™, CV_WINDOW_AUTOSIZE);

long current_frame = 0;
while(true)

{
static Ipllmage *frame = NULL, *framel = NULL, *framel 1C = NULL, *frame2_1C =
NULL, *eig_image = NULL, *temp_image = NULL, *pyramidl = NULL, *pyramid2 = NULL;

/* Go to the frame we want. Important if multiple frames are queried in

* the loop which they of course are for optical flow. Note that the very
* Ffirst call to this is actually not needed. (Because the correct position
* is set outsite the for() loop.)
*/

cvSetCaptureProperty(input_video, CV_CAP_PROP_POS FRAMES, current_frame);

/* Get the next frame of the video.

* IMPORTANT! cvQueryFrame() always returns a pointer to the _same_
* memory location. So successive calls:

* framel = cvQueryFrame();

* frame2 = cvQueryFrame();

* frame3 = cvQueryFrame();

* will result in (framel == frame2 && frame2 == frame3) being true.
* The solution is to make a copy of the cvQueryFrame() output.

*/

frame = cvQueryFrame(input_video);
if (frame == NULL)

/* Why did we get a NULL frame? We shouldn"t be at the end. */
fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
return -1;

/* Allocate another image if not already allocated.
* Image has ONE challenge of color (ie: monochrome) with 8-bit "color™ depth.
* This is the image format OpenCV algorithms actually operate on (mostly).
*/
allocateOnDemand(&framel 1C, frame_size, IPL_DEPTH 8U, 1);
/* Convert whatever the AVl image format is into OpenCV"s preferred format.
* AND flip the image vertically. Flip is a shameless hack. OpenCV reads
* in AVIs upside-down by default. (No comment :-))
*/
cvConvertlmage(frame, framel_1C, CV_CVTIMG_FLIP);

/* We"ll make a full color backup of this frame so that we can draw on it.

* (It"s not the best idea to draw on the static memory space of cvQueryFrame().)
*/

allocateOnDemand(&framel, frame_size, IPL_DEPTH 8U, 3);

cvConvertlimage(frame, framel, CV_CVTIMG_FLIP);

/* Get the second frame of video. Sample principles as the first. */
frame = cvQueryFrame(input_video);
if (frame == NULL)
{
fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
return -1;

}
allocateOnDemand(&frame2_1C, frame_size, IPL_DEPTH 8U, 1);
cvConvertlmage(frame, frame2_1C, CV_CVTIMG_FLIP);

/* Shi and Tomasi Feature Tracking! */

C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp 3

/* Preparation: Allocate the necessary storage. */
allocateOnDemand(&eig_image, frame_size, IPL_DEPTH_32F, 1);
allocateOnDemand(&temp_image, frame_size, IPL_DEPTH_32F, 1);

/* Preparation: This array will contain the features found in frame 1. */
CvPoint2D32f framel_features[400];

/* Preparation: BEFORE the function call this variable is the array size
* (or the maximum number of features to find). AFTER the function call
* this variable is the number of features actually found.

*/
int number_of_features;

/* 1"m hardcoding this at 400. But you should make this a #define so that you can
* change the number of features you use for an accuracy/speed tradeoff analysis.
*/

number_of_features = 400;

/* Actually run the Shi and Tomasi algorithm!!
* “framel_1C" is the input image.
* "eig_image" and "temp_image" are just workspace for the algorithm.
* The first ".01" specifies the minimum quality of the features (based on the "4
eigenvalues).
* The second ".01" specifies the minimum Euclidean distance between features.
* "NULL"™ means use the entire input image. You could point to a part of the 4
image.
* WHEN THE ALGORITHM RETURNS:
* "framel_features™ will contain the feature points.

* "number_of_features"™ will be set to a value <= 400 indicating the number of "4
feature points found.

*/

cvGoodFeaturesToTrack(framel_1C, eig_image, temp_image, framel_features, & V4

number_of_features, .01, .01, NULL);
/* Pyramidal Lucas Kanade Optical Flow! */

/* This array will contain the locations of the points from frame 1 in frame 2. */
CvPoint2D32f frame2_features[400];

/* The i-th element of this array will be non-zero if and only if the i-th featurew
of

* frame 1 was found in frame 2.

*/

char optical_flow_found_feature[400];

/* The i-th element of this array is the error in the optical flow for the i-th "4
feature
* of framel as found in frame 2. |ITf the i-th feature was not found (see the 4
array above)
* 1 think the i-th entry in this array is undefined.
*/
float optical_flow_feature_error[400];

/* This is the window size to use to avoid the aperture problem (see slide 4
"Optical Flow: Overview"). */
CvSize optical_flow_window = cvSize(3,3);

/* This termination criteria tells the algorithm to stop when it has either done
20 iterations or when
* epsilon is better than .3. You can play with these parameters for speed vs. 4
accuracy but these values
* work pretty well in many situations.
*/
CvTermCriteria optical_flow_termination_criteria

= cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3);

C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp 4

/* This is some workspace for the algorithm.
* (The algorithm actually carves the image into pyramids of different resolutionse

-)
*/
allocateOnDemand(&pyramidl, frame_size, IPL_DEPTH_8U, 1);
allocateOnDemand(&pyramid2, frame_size, IPL_DEPTH 8U, 1);
/* Actually run Pyramidal Lucas Kanade Optical Flow!!
* "framel_1C" is the fTirst frame with the known features.
* "frame2_1C" is the second frame where we want to find the first frame®"s 4
features.

* "pyramidl" and "pyramid2'" are workspace for the algorithm.

* "framel_features'"™ are the features from the Tirst frame.

* "frame2_features" is the (outputted) locations of those features in the second w
frame.

* "number_of_ features"™ is the number of features in the framel features array.

* "optical_flow_window"™ is the size of the window to use to avoid the aperture "4
problem.

* 5" Is the maximum number of pyramids to use. O would be just one level.

* "optical_flow_found_feature' is as described above (non-zero iff feature found w
by the flow).

* "optical_flow_feature_error" is as described above (error in the flow for this w
feature).

* "optical_flow_termination_criteria" is as described above (how long the 4
algorithm should look).

* "0" means disable enhancements. (For example, the second aray isn"t pre- 4
initialized with guesses.)

*/

cvCalcOpticalFlowPyrLK(framel_1C, frame2_1C, pyramidl, pyramid2, framel_features,
frame2_features, number_of features, optical_flow_window, 5,
optical_flow_found_feature, optical_flow_feature_error,
optical_flow_termination_criteria, 0);

KRKRK

/* For fun (and debugging :)), let"s draw the flow field. */
for(int 1 = 0; i < number_of_features; i++)

{
/* 1T Pyramidal Lucas Kanade didn"t really find the feature, skip it. */
if (optical_flow_found_feature[i] == 0) continue;
int line_thickness; line_thickness = 1;

/* CV_RGB(red, green, blue) is the red, green, and blue components
* of the color you want, each out of 255.

*/
CvScalar line_color; line_color = CV_RGB(255,0,0);

/* Let"s make the flow field look nice with arrows. */

/* The arrows will be a bit too short for a nice visualization because of the ¢
high framerate
* (ie: there®s not much motion between the frames). So let"s lengthen them ¢
by a factor of 3.
*/
CvPoint p,q;

p-x = (int) framel features[i].x;
p-y = (int) framel features[i].y;
q-x = (int) frame2_features[i].X;
q-y = (int) frame2_features[i].y;
double angle; angle = atan2((double) p.y - q.y, (double) p.x - q.x);

double hypotenuse; hypotenuse = sqrt(square(p.-y - q.y) + square(p-X - q-X))«

/* Here we lengthen the arrow by a factor of three. */
q-x = (int) (p-x - 3 * hypotenuse * cos(angle));
q-y = (int) (p-y - 3 * hypotenuse * sin(angle));

/* Now we draw the main line of the arrow. */

C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp 5

/* "framel” is the frame to draw on.
* "p" is the point where the line begins.
* Q" is the point where the line stops.
* "CV_AA" means antialiased drawing.
* 0" means no fractional bits in the center cooridinate or radius.
*/
cvLine(framel, p, q, line_color, line_thickness, CV_AA, 0);
/* Now draw the tips of the arrow. 1 do some scaling so that the
* tips look proportional to the main line of the arrow.

*/

p-x = (int) (q-x + 9 * cos(angle + pi /7 4));

p.y = (int) (q.y + 9 * sin(angle + pi / 4));

cvLine(framel, p, q, line_color, line_thickness, CV_AA, 0);
p-x = (int) (q-x + 9 * cos(angle - pi / 4));

p.y = (int) (q.y + 9 * sin(angle - pi /7 4));

cvLine(framel, p, q, line_color, line_thickness, CV_AA, 0);

/* Now display the image we drew on. Recall that "Optical Flow" is the name of
* the window we created above.

*/
cvShowlmage(*'Optical Flow", framel);
/* And wait for the user to press a key (so the user has time to look at the 4
image) .

* If the argument is O then it waits forever otherwise it waits that number of 4
milliseconds.

* The return value is the key the user pressed.

*/

int key pressed;

key_pressed = cvWaitKey(0);

/* 1T the users pushes "b"™ or "B'" go back one frame.
* Otherwise go forward one frame.

*/

if (key_pressed == "b" || key_pressed == "B") current_frame--;
else current_frame++;
/* Don"t run past the front/end of the AVI. */

if (current_frame < 0) current_frame 0;

if (current_frame >= number_of_ frames - 1) current_frame number_of_frames - 2;

