
1

The OpenCV Library:
Computing Optical Flow

David Stavens
Stanford Artificial Intelligence Lab

I received some requests…

…on what to cover tonight:

“Perhaps you could do one of the 14
projects in the course? In front of us.
In one hour.”

-- Anonymous

2

Tonight we’ll code:

A fully functional sparse optical flow algorithm!

Plan

OpenCV Basics
What is it?
How do we get started?

Feature Finding and Optical Flow
A brief mathematical discussion.

OpenCV Implementation of Optical Flow
Step by step.

3

What is OpenCV?

Really four libraries in one:
“CV” – Computer Vision Algorithms

All the vision algorithms.
“CVAUX” – Experimental/Beta

Useful gems :-)
“CXCORE” – Linear Algebra

Raw matrix support, etc.
“HIGHGUI” – Media/Window Handling

Read/write AVIs, window displays, etc.

Created/Maintained by Intel

Installing OpenCV
Download from:

http://sourceforge.net/projects/opencvlibrary/

Be sure to get the August 2004 release:
“Beta 4” for Windows XP/2000
“Beta 4” or “0.9.6” for Linux

Windows version comes with an installer.
Linux:

gunzip opencv-0.9.6.tar.gz; tar –xvf opencv-0.9.6.tar
cd opencv-0.9.6; ./configure --prefix=/usr; make
make install [as root]

4

Tell Visual Studio where the includes are.

Tell Visual Studio to link against cxcore.lib, cv.lib, and highgui.lib.

5

Tell Visual Studio to disable managed extensions.

Plan

OpenCV Basics
What is it?
How do we get started?

Feature Finding and Optical Flow
A brief mathematical discussion.

OpenCV Implementation of Optical Flow
Step by step.

6

Optical Flow: Overview

Given a set of points in an image, find
those same points in another image.

Or, given point [ux, uy]T in image I1
find the point [ux + δx, uy + δy]T in
image I2 that minimizes ε:

(the Σ/w’s are needed due to the aperture problem)

()∑ ∑
+

−=

+

−=

++−=
xx

xx

yy

yy

wu

wux

wu

wuy
yxyx yxIyxI),(),(),(21 δδδδε

Optical Flow: Utility
Tracking points (“features”) across multiple
images is a fundamental operation in many
computer vision applications:

To find an object from one image in another.
To determine how an object/camera moved.
To resolve depth from a single camera.

…or stereo.

~ 75% of this year’s CS 223b projects.

But what are good features to track?

7

Finding Features: Overview
Intuitively, a good feature needs at least:

Texture (or ambiguity in tracking)
Corner (or aperture problem)

But what does this mean formally?

Shi/Tomasi. Intuitive result really part of motion equation.
High eigenvalues imply reliable solvability. Nice!

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂∂
∂

∂∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∑∑

∑∑

odneighborhoodneighborho

odneighborhoodneighborho

yyx

yxx

 I I

I I

22

22
A good feature has big
eigenvalues, implies:

Texture
Corner

Plan

OpenCV Basics
What is it?
How do we get started?

Feature Finding and Optical Flow
A brief mathematical discussion.

OpenCV Implementation of Optical Flow
Step by step.

8

So now let’s code it!

Beauty of OpenCV:
All of the Above = Two Function Calls
Plus some support code :-)

Let’s step through the pieces.

These slides provide the high-level.
Full implementation with extensive comments:

http://robotics.stanford.edu/~dstavens/cs223b

Step 1: Open Input Video

CvCapture *input_video =
cvCaptureFromFile(“filename.avi”);

Failure modes:
The file doesn’t exist.
The AVI uses a codec OpenCV can’t read.

Codecs like MJPEG and Cinepak are good.
DV, in particular, is bad.

9

Step 2: Get A Video Frame

cvQueryFrame(input_video);

This is a hack so that we can look at
the internals of the AVI. OpenCV
doesn’t allow us to do that correctly
unless we get a video frame first.

Step 3: Read AVI Properties

CvSize frame_size;
frame_size.height =

cvGetCaptureProperty(input_video,
CV_CAP_PROP_FRAME_HEIGHT);

Similar construction for getting the
width and the number of frames.

See the handout.

10

Step 4: Create a Window

cvNamedWindow(“Optical Flow”,
CV_WINDOW_AUTOSIZE);

We will put our output here for
visualization and debugging.

Step 5: Loop Through Frames

Go to frame N:
cvSetCaptureProperty(input_video,
CV_CAP_PROP_POS_FRAMES, N);

Get frame N:
IplImage *frame = cvQueryFrame(input_video);

Important: cvQueryFrame always returns a
pointer to the same location in memory.

11

Step 6: Convert/Allocate

Convert input frame to 8-bit mono:
IplImage *frame1 =

cvCreateImage(cvSize(width, height),
IPL_DEPTH_8U, 1);

cvConvertImage(frame, frame1);

Actually need third argument to
conversion: CV_CVTIMG_FLIP.

Step 7: Run Shi and Tomasi

CvPoint2D32f frame1_features[N];
cvGoodFeaturesToTrack(

frame1, eig_image, temp_image,
frame1_features, &N, .01, .01, NULL);

Allocate eig,temp as in handout.
On return frame1_features is full and
N is the number of features found.

12

Step 8: Run Optical Flow
char optical_flow_found_feature[];
float optical_flow_feature_error[];
CvTermCriteria term =

cvTermCriteria(CV_TERMCRIT_ITER |
CV_TERMCRIT_EPS, 20, .3);

cvCalcOpticalFlowPyrLK(…);
13 arguments total. All of the above.

Both frames, both feature arrays, etc.
See full implementation in handout.

Step 9: Visualize the Output

CvPoint p, q;
p.x = 1; p.y = 1; q.x = 2; q.y = 2;
CvScalar line_color;
line_color = CV_RGB(255, 0, 0);
int line_thickness = 1;

cvLine(frame1, p,q, line_color, line_thickness, CV_AA, 0);
cvShowImage(“Optical Flow”, frame1);

CV_AA means draw the line antialiased.
0 means there are no fractional bits.

13

Step 10: Make an AVI output

CvVideoWriter *video_writer =
cvCreateVideoWriter(“output.avi”,
-1, frames_per_second, cvSize(w,h));
(“-1” pops up a nice GUI.)

cvWriteFrame(video_writer, frame);
Just like cvShowImage(window, frame);

cvReleaseVideoWriter(&video_writer);

Let’s watch the result:

(The Stanford Roadrunner Robot.)

14

That’s the first step for…

Stavens, Lookingbill, Lieb, Thrun; CS223b 2004; ICRA 2005

A few closing thoughts…

I’ve really described the lowest level.

Your projects will begin with code like this and then
you’ll implement something that’s not in OpenCV.

OpenCV is good for non-vision things too.

Feel free ask questions!
dstavens@robotics.stanford.edu or Gates 226

Good luck!! 223b projects are fun :-)

1C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp

/* --Sparse Optical Flow Demo Program--
 * Written by David Stavens (dstavens@robotics.stanford.edu)
 */
#include <stdio.h>
#include <cv.h>
#include <highgui.h>
#include <math.h>

static const double pi = 3.14159265358979323846;

inline static double square(int a)
{
 return a * a;
}

/* This is just an inline that allocates images. I did this to reduce clutter in the
 * actual computer vision algorithmic code. Basically it allocates the requested image
 * unless that image is already non-NULL. It always leaves a non-NULL image as-is even
 * if that image's size, depth, and/or channels are different than the request.
 */
inline static void allocateOnDemand(IplImage **img, CvSize size, int depth, int channels

)
{
 if (*img != NULL) return;

 *img = cvCreateImage(size, depth, channels);
 if (*img == NULL)
 {
 fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n");
 exit(-1);
 }
}

int main(void)
{
 /* Create an object that decodes the input video stream. */
 CvCapture *input_video = cvCaptureFromFile(
 "C:\\Documents and Settings\\David Stavens\\Desktop\\223B-Demo\\optical_flow_input

.avi"
);
 if (input_video == NULL)
 {
 /* Either the video didn't exist OR it uses a codec OpenCV
 * doesn't support.
 */
 fprintf(stderr, "Error: Can't open video.\n");
 return -1;
 }

 /* This is a hack. If we don't call this first then getting capture
 * properties (below) won't work right. This is an OpenCV bug. We
 * ignore the return value here. But it's actually a video frame.
 */
 cvQueryFrame(input_video);

 /* Read the video's frame size out of the AVI. */
 CvSize frame_size;
 frame_size.height =
 (int) cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_HEIGHT);
 frame_size.width =
 (int) cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_WIDTH);

 /* Determine the number of frames in the AVI. */
 long number_of_frames;
 /* Go to the end of the AVI (ie: the fraction is "1") */
 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_AVI_RATIO, 1.);
 /* Now that we're at the end, read the AVI position in frames */

2C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp

 number_of_frames = (int) cvGetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES);
 /* Return to the beginning */
 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES, 0.);

 /* Create three windows called "Frame N", "Frame N+1", and "Optical Flow"
 * for visualizing the output. Have those windows automatically change their
 * size to match the output.
 */
 cvNamedWindow("Optical Flow", CV_WINDOW_AUTOSIZE);

 long current_frame = 0;
 while(true)
 {
 static IplImage *frame = NULL, *frame1 = NULL, *frame1_1C = NULL, *frame2_1C =

NULL, *eig_image = NULL, *temp_image = NULL, *pyramid1 = NULL, *pyramid2 = NULL;

 /* Go to the frame we want. Important if multiple frames are queried in
 * the loop which they of course are for optical flow. Note that the very
 * first call to this is actually not needed. (Because the correct position
 * is set outsite the for() loop.)
 */
 cvSetCaptureProperty(input_video, CV_CAP_PROP_POS_FRAMES, current_frame);

 /* Get the next frame of the video.
 * IMPORTANT! cvQueryFrame() always returns a pointer to the _same_
 * memory location. So successive calls:
 * frame1 = cvQueryFrame();
 * frame2 = cvQueryFrame();
 * frame3 = cvQueryFrame();
 * will result in (frame1 == frame2 && frame2 == frame3) being true.
 * The solution is to make a copy of the cvQueryFrame() output.
 */
 frame = cvQueryFrame(input_video);
 if (frame == NULL)
 {
 /* Why did we get a NULL frame? We shouldn't be at the end. */
 fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
 return -1;
 }
 /* Allocate another image if not already allocated.
 * Image has ONE challenge of color (ie: monochrome) with 8-bit "color" depth.
 * This is the image format OpenCV algorithms actually operate on (mostly).
 */
 allocateOnDemand(&frame1_1C, frame_size, IPL_DEPTH_8U, 1);
 /* Convert whatever the AVI image format is into OpenCV's preferred format.
 * AND flip the image vertically. Flip is a shameless hack. OpenCV reads
 * in AVIs upside-down by default. (No comment :-))
 */
 cvConvertImage(frame, frame1_1C, CV_CVTIMG_FLIP);

 /* We'll make a full color backup of this frame so that we can draw on it.
 * (It's not the best idea to draw on the static memory space of cvQueryFrame().)
 */
 allocateOnDemand(&frame1, frame_size, IPL_DEPTH_8U, 3);
 cvConvertImage(frame, frame1, CV_CVTIMG_FLIP);

 /* Get the second frame of video. Sample principles as the first. */
 frame = cvQueryFrame(input_video);
 if (frame == NULL)
 {
 fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
 return -1;
 }
 allocateOnDemand(&frame2_1C, frame_size, IPL_DEPTH_8U, 1);
 cvConvertImage(frame, frame2_1C, CV_CVTIMG_FLIP);

 /* Shi and Tomasi Feature Tracking! */

3C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp

 /* Preparation: Allocate the necessary storage. */
 allocateOnDemand(&eig_image, frame_size, IPL_DEPTH_32F, 1);
 allocateOnDemand(&temp_image, frame_size, IPL_DEPTH_32F, 1);

 /* Preparation: This array will contain the features found in frame 1. */
 CvPoint2D32f frame1_features[400];

 /* Preparation: BEFORE the function call this variable is the array size
 * (or the maximum number of features to find). AFTER the function call
 * this variable is the number of features actually found.
 */
 int number_of_features;

 /* I'm hardcoding this at 400. But you should make this a #define so that you can
 * change the number of features you use for an accuracy/speed tradeoff analysis.
 */
 number_of_features = 400;

 /* Actually run the Shi and Tomasi algorithm!!
 * "frame1_1C" is the input image.
 * "eig_image" and "temp_image" are just workspace for the algorithm.
 * The first ".01" specifies the minimum quality of the features (based on the

eigenvalues).
 * The second ".01" specifies the minimum Euclidean distance between features.
 * "NULL" means use the entire input image. You could point to a part of the

image.
 * WHEN THE ALGORITHM RETURNS:
 * "frame1_features" will contain the feature points.
 * "number_of_features" will be set to a value <= 400 indicating the number of

feature points found.
 */
 cvGoodFeaturesToTrack(frame1_1C, eig_image, temp_image, frame1_features, &

number_of_features, .01, .01, NULL);

 /* Pyramidal Lucas Kanade Optical Flow! */

 /* This array will contain the locations of the points from frame 1 in frame 2. */
 CvPoint2D32f frame2_features[400];

 /* The i-th element of this array will be non-zero if and only if the i-th feature
 of

 * frame 1 was found in frame 2.
 */
 char optical_flow_found_feature[400];

 /* The i-th element of this array is the error in the optical flow for the i-th
feature

 * of frame1 as found in frame 2. If the i-th feature was not found (see the
array above)

 * I think the i-th entry in this array is undefined.
 */
 float optical_flow_feature_error[400];

 /* This is the window size to use to avoid the aperture problem (see slide
"Optical Flow: Overview"). */

 CvSize optical_flow_window = cvSize(3,3);

 /* This termination criteria tells the algorithm to stop when it has either done

20 iterations or when
 * epsilon is better than .3. You can play with these parameters for speed vs.

accuracy but these values
 * work pretty well in many situations.
 */
 CvTermCriteria optical_flow_termination_criteria
 = cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3);

4C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp

 /* This is some workspace for the algorithm.
 * (The algorithm actually carves the image into pyramids of different resolutions

.)
 */
 allocateOnDemand(&pyramid1, frame_size, IPL_DEPTH_8U, 1);
 allocateOnDemand(&pyramid2, frame_size, IPL_DEPTH_8U, 1);

 /* Actually run Pyramidal Lucas Kanade Optical Flow!!
 * "frame1_1C" is the first frame with the known features.
 * "frame2_1C" is the second frame where we want to find the first frame's

features.
 * "pyramid1" and "pyramid2" are workspace for the algorithm.
 * "frame1_features" are the features from the first frame.
 * "frame2_features" is the (outputted) locations of those features in the second

frame.
 * "number_of_features" is the number of features in the frame1_features array.
 * "optical_flow_window" is the size of the window to use to avoid the aperture

problem.
 * "5" is the maximum number of pyramids to use. 0 would be just one level.
 * "optical_flow_found_feature" is as described above (non-zero iff feature found

by the flow).
 * "optical_flow_feature_error" is as described above (error in the flow for this

feature).
 * "optical_flow_termination_criteria" is as described above (how long the

algorithm should look).
 * "0" means disable enhancements. (For example, the second aray isn't pre-

initialized with guesses.)
 */
 cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2, frame1_features,

frame2_features, number_of_features, optical_flow_window, 5,
optical_flow_found_feature, optical_flow_feature_error,
optical_flow_termination_criteria, 0);

 /* For fun (and debugging :)), let's draw the flow field. */
 for(int i = 0; i < number_of_features; i++)
 {
 /* If Pyramidal Lucas Kanade didn't really find the feature, skip it. */
 if (optical_flow_found_feature[i] == 0) continue;

 int line_thickness; line_thickness = 1;
 /* CV_RGB(red, green, blue) is the red, green, and blue components
 * of the color you want, each out of 255.
 */
 CvScalar line_color; line_color = CV_RGB(255,0,0);

 /* Let's make the flow field look nice with arrows. */

 /* The arrows will be a bit too short for a nice visualization because of the
high framerate

 * (ie: there's not much motion between the frames). So let's lengthen them
by a factor of 3.

 */
 CvPoint p,q;
 p.x = (int) frame1_features[i].x;
 p.y = (int) frame1_features[i].y;
 q.x = (int) frame2_features[i].x;
 q.y = (int) frame2_features[i].y;

 double angle; angle = atan2((double) p.y - q.y, (double) p.x - q.x);
 double hypotenuse; hypotenuse = sqrt(square(p.y - q.y) + square(p.x - q.x))

;

 /* Here we lengthen the arrow by a factor of three. */
 q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
 q.y = (int) (p.y - 3 * hypotenuse * sin(angle));

 /* Now we draw the main line of the arrow. */

5C:\Documents and Settings\David Stavens\Desktop\223B-Demo\optical_flow_demo.cpp

 /* "frame1" is the frame to draw on.
 * "p" is the point where the line begins.
 * "q" is the point where the line stops.
 * "CV_AA" means antialiased drawing.
 * "0" means no fractional bits in the center cooridinate or radius.
 */
 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
 /* Now draw the tips of the arrow. I do some scaling so that the
 * tips look proportional to the main line of the arrow.
 */
 p.x = (int) (q.x + 9 * cos(angle + pi / 4));
 p.y = (int) (q.y + 9 * sin(angle + pi / 4));
 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
 p.x = (int) (q.x + 9 * cos(angle - pi / 4));
 p.y = (int) (q.y + 9 * sin(angle - pi / 4));
 cvLine(frame1, p, q, line_color, line_thickness, CV_AA, 0);
 }
 /* Now display the image we drew on. Recall that "Optical Flow" is the name of
 * the window we created above.
 */
 cvShowImage("Optical Flow", frame1);
 /* And wait for the user to press a key (so the user has time to look at the

image).
 * If the argument is 0 then it waits forever otherwise it waits that number of

milliseconds.
 * The return value is the key the user pressed.
 */
 int key_pressed;
 key_pressed = cvWaitKey(0);

 /* If the users pushes "b" or "B" go back one frame.
 * Otherwise go forward one frame.
 */
 if (key_pressed == 'b' || key_pressed == 'B') current_frame--;
 else current_frame++;
 /* Don't run past the front/end of the AVI. */
 if (current_frame < 0) current_frame = 0;
 if (current_frame >= number_of_frames - 1) current_frame = number_of_frames - 2;
 }
}

