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Abstract

A method is presented for enabling an autonomous helicopter to integrate data from a single or multiple-axis accelerometer with camera imagery in order to localize itself completely in 6 degrees of freedom, thereby allowing aircraft to jettison heavier devices such as GPS which are also sensitive to orientation and satellite positions. In highly acrobatic maneuvers, the line of sight of GPS can be interrupted, therefore causing immediate drift in position estimates at a very precarious moment. Various feature detection and tracking methods are compared, and a bundle adjustment based method for recovering structure from motion is evaluated.  SIFT features tracked with optical flow and Kalman filters are successfully paired with conjugate gradient based methods of bundle adjustments. 
1
Introduction

The problem of extracting spatial structure from a video stream would be fairly straightforward in a world of perfect feature detection, correspondence, and scale estimation.  Unfortunately, all of these can be very difficult in real-world situations, and resolving these problems for a specific application often requires substantial effort.  Developing a robust set of tools and methods tailored to video streams taken from a wide-angle camera onboard a model helicopter would facilitate integration of visual mapping and navigation into existing and new helicopter projects, which would be useful for situations such as flight in areas without reliable GPS, flight in areas where obstacles are unknown and vision is the best way to detect and avoid them. In addition , it useful for mapping applications, or autonomous landing-site identification.

The problem to be addressed can be divided into three areas:  feature detection and correspondence, localization and map construction, and scale estimation.  The effectiveness of feature detection and correspondence algorithms is highly dependent on the type of scene in which they are to be performed.  Although many feature detectors exist, it is far from obvious which detectors offer the best combination of frame-to-frame consistency, invariance to angle changes and lens-distortion, and amenability to error-resistant correspondence matching during flight.  We show that a tracking algorithm which combines information from a SIFT feature detector and optical flow estimates is an appropriate choice for this problem area.

Similarly, there are many assumptions to be made in constructing a spatial map from noisy video data in order to reject reconstructions that are clearly erroneous.  Determining which of those assumptions are likely to hold for footage taken from a helicopter will make the resulting mapping and localization process more robust and efficient than a general-purpose structure from motion algorithm, since the types of errors that are most worrisome for the purposes of keeping a helicopter aloft are significantly different from the types of errors that are a problem for scanning a model in a laboratory.  Additionally, the use of a wide-angle lens makes the solution of the structure from motion problem under perspective necessary, which is significantly harder than in cases where an orthographic projection is a good approximation1.  Bundle adjustment is one solution to the problem of projective structure from motion; however, because of the size of the minimization problem involved it can be difficult to compute quickly.  In order to speed the minimization orthographic Tomasi-Kanade factorization is combined with altitude estimates in order to obtain accurate initial guesses for helicopter motion and reduce the number of iterations needed for convergence.

Finally, the scale estimation problem is one that does not have a solution within the framework of traditional structure from motion, although solving it is a key step on the way to the development and use of a vision-based navigation system for a helicopter.  Identifying clues from either the image stream itself, or from other sensors, that will work in unstructured outdoors environments is key to ensuring the applicability of this method to real-world problems in autonomous aviation.  In particular, integration with data from an accelerometer is shown to disambiguate the scale problem and allow fully accurate 3D reconstruction of ego-motion and environment structure. 

A combination of existing feature detectors and structure from motion algorithms with heuristics for scale estimation, with a focus on obtaining data suitable for use in a helicopter control system, comprises a package which can robustly estimate the structure of the environment and the trajectory of the camera within it for the types of images and movement patterns typically seen in helicopter flight.  There are significant constraints on the types of motion and types of scene that the system needs to process which can be leveraged to obtain better feature correspondence and better initial structure estimates than unconstrained structure from motion.  In addition, use of a wide-angle lens enables us to track individual features and feature patterns over a relatively long distance, in order to ensure that different portions of our constructed map will be consistent with one another in terms of translation, orientation, and scale.

2
Background
Although onboard vision is potentially one of the most powerful types of sensors for airborne vehicles, it is still not an easy task to integrate a vision processing system into an existing helicopter platform.  The majority of cameras mounted on small aircraft have been used for applications where no processing is necessary, specifically for obtaining pictures and videos and for allowing remote human control of the craft.  Vision has been successfully used in conjunction with GPS and inertial measurement units for landing assistance1,2.  All successful landing demonstrations, however, have relied on the use of known landing pads, which reduces the vision-processing component of the problem to a fitting of a known marker geometry to an image from a calibrated camera.  CMU has developed a “visual odometer” system onboard a helicopter, using custom hardware and stereo cameras, which was used in conjunction with full GPS and IMU measurements to track the helicopter’s movement through an environment and construct models, however their approach was to use stereo cameras, special purpose hardware, and all available data3.  To date, no system has been developed for allowing a helicopter to be flown autonomously based mainly on onboard data, or for integrating limited external sensor data to resolve the scale problem automatically.
Feature Detection and Tracking
Since these features will be used for real-time correspondence, they should ideally have the following qualities: easy to find, uniquely identifiable, scale and rotation invariant, and robust to lighting changes.  Corner detection is a popular choice in computer vision and can be classified broadly into two categories.  The first is based in the extraction of image contours such as the one described by Tomasi and Kanade7 and another analyzes local gray values.8  There are many other papers describing different improvements on corner detection through techniques such as the wavelet transform and various sophisticated edge detection algorithms.9,10  Another method finds corners which are highly scale and rotation invariant.11  David Lowe also uses the concept of scale space in the development of an algorithm called SIFT (Scale invariant feature transform).12  Tracking on a sequence of images can be done through feature detections combined with optical flow and Kalman filters.
3
Approach
Our major areas of focus in this work are feature extraction and 3D reconstruction.  In order to decouple these two problems from one another and allow us to optimize each of them independently, we have also tested extensively on synthetic data-sets and used these to perfect our 3D reconstruction and solution of the scale problem.

Our overall goal for the algorithm is to use the change in image location of features over time in order to estimate location of the points in space and travel of the helicopter.  To do this, it is important for us to have features which can be observed consistently over the course of significant translations and rotations of the helicopter.  We would also like to use features which can be distinguished from one another to make the correspondence problem more robust to large motions in image-space between successive update steps.

One type of feature that matches these criteria very well is intentionally placed visual markers.  Even without prior knowledge of their placement, the existence of sharp unmistakable corners allows us to rely more on the accuracy of our feature detection algorithm across a wide variety of viewing situations, and substantially reduces our reliance on specifics of the environment in which we are operating.  Because a marker provides several different corner and edge features, it also allows us to solve the correspondence problem without relying heavily on temporal stability in image space, which is crucial for robustness of the algorithm to visual obstructions, temporary video-stream loss, or rapid movements of the helicopter.  Ideally, however, our system would not rely on any type of pre-existing markers, and could work from observations of its environment.

In order to obtain many of the same advantages of a marker-based system, we propose using scale invariant feature transforms, or SIFT features, to detect regions of the captured video which will be easy to locate in subsequent frames.  One of the most important characteristics of the SIFT features is their encoding of the brightness pattern in their local area, which allows them to be distinguished from one another.  This property makes the construction of a map large enough that not all markers are in view simultaneously possible, because it will be possible to recognize features when they are seen again from a combination of expected position and expected appearance.  SIFT features also have the advantage of being relatively robust to changes in lighting or camera orientation, so that we can rely on a given feature being available to use for a sufficiently long time that we can localize it accurately and use that data to help determine the helicopter’s position and orientation.

Although global SIFT correspondence has many advantages for large map generation, for small-displacement tracking it has several disadvantages which can be solved by a tracking approach.  Most significantly, the algorithm fails to take into account the information that we have about likely helicopter trajectories, which is a much more constrained space than SIFT features are designed to operate in general.  In addition, however, because SIFT emphasizes reliable detection over precise placement, the detected location of SIFT features over multiple images exhibits some jitter, which is very undesirable for the later 3D reconstruction attempt.  Finally, global SIFT detection requires comparison to a global database which grows linearly with time, so it cannot be used in the most obvious way for any system which hopes to be real-time, due to the fact that the time required to process each frame scales linearly with the number of frames processed to date.

A Kalman filter provides a prior over the location and velocity of a SIFT feature which we are tracking, which allows us to quickly decide whether a given SIFT feature has a good match without comparing against the global database for every feature, and also allows us to track features which are not strong enough to be reliably identified by the global sift algorithm because the much smaller set of potential matches drastically cuts the potential for false positive matches.  In order to update the Kalman filters effectively, we also integrate the Lucas-Kanade pyramidal optical flow algorithm as a means of estimating image-space feature velocity, so that we would have both position and velocity updates to the filter for each tracked point.

After feature detection and correspondence, the process of constructing a 3D model of the world and camera trajectory progresses through three main stages.  First, we filter the tracked features to identify features which are tracked the most consistently over the segment of video we are interested in.  We identify subsets of frames and features for which all features appear in all frames and use these to run orthographic Tomasi-Kanade factorization and achieve initial guesses for relative camera orientations in different segments of video.  Next, by using least-squares fitting to align coordinate axes for the same cameras across different factorizations a global estimate of camera orientations is constructed, and an assumption that altitude remains fairly constant over a short timestep allows full six degree of freedom pose estimates to be obtained for all cameras.

After the initial estimates for camera and 3D-point positions have been obtained, we begin bundle adjustment. Bundle adjustment in general is the minimization of re-projection error defined by:14,19
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where (u,v) are the positions of the features in the image plane, M is the 3 by 4 matrix defining a camera projection, namely a rotation and translation, and P, point defined in 3D homogenous coordinates, that is, (P​​w 1)t.  
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The goal is to solve for the X,Y,Z coordinates of the 3D points represented by the features and the 12 parameters defining a camera. It is important to perform outlier removal, which we performed by capping the maximum error contribution of a feature in a given image. In our case, the camera was calibrated, so the calibration constants can be factored out, leaving 6 parameters to be solved for each camera, (3 angles and 3 for translation). It is important to precondition the solution vectors by attributing factors to each component so that they are close to the same scale. This is especially important when using angles, because each step could cause the cameras to rotate around several times, if the step size is big relative to the periodicity of the angle representation. It is preferable to use angles over some other parameterization of orientation when it is possible to avoid singularities, because it uses the minimum number of parameters and automatically satisfies the rotation matrix constraints.
We used conjugate-gradient descent with pre-conditioning to solve the minimization problem. Another very popular minimization method is Marquardt-Levenberg with sparse factorization.16 We advocate no particular minimization method in particular, since hundreds of papers have been written on this topic. 
It is important to note that scale cannot be recovered from minimizing the error function described above. The equation below illustrates the ambiguity of the free variable of lambda, representing scale. Intuitively, it means that if you change all the position units to a different one, from centimeters to meters, for example, the error function will remain the same.15,19
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Finally, when a solution is reached for the bundle adjustment, the problem of scale is addressed.   In this stage, information from any external scale-dependent sensor can be used to resolve the ambiguities.  In the case of helicopter flight, one obvious option is an accelerometer.  
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In this case, a Kalman filter or some method can be used for estimating the second derivative of the translation vectors of the cameras. Since our images are recorded at a fixed rate, and we have vision based position estimates at each frame, these derivatives are easy to calculate. In the results section, we will describe an experiment in which we mounted a camera on a robotic arm to get very precise position estimates of the helicopter. This allows us to isolate the error in our experiment almost exclusively to the method of recovering structure from motion, because the PUMA robotic arm has very high precision sensors that are sampled at 500hz. 
The scaling of our structure from motion estimate to match the data from the accelerometer is the solution of a linear system, where we find the factor which achieves the best match between the acceleration values predicted by a Kalman filter run over the structure from motion solution and those measured directly.  
This can be accomplished even if the orientation of the sensors relative to each other is not known to high precision, which is a practical problem that occurs in both the case of a helicopter and robotic arm. For instance in our case, since gravity does not affect the acceleration readings of the PUMA arm, we can simply solve a linear equation between the magnitude of the acceleration vector given by the vision based and sensor based methods. This has the added benefit of avoiding the problem of deciding what to do when you find a different scale factor for each component of the vector.
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Since both coordinate frames are formed by orthonormal basis vectors, it is not necessary know how the camera is positioned relative to the arm, since this will not affect the magnitudes of the vectors even if we transformed them to the same frame. 
After scale is solved it then becomes an other equally easy problem to solve for the relative orientation between the two frames.  In this case, since the rotation matrix is constrained by orthonormality, we use the SVD method described by Trucco and Verri to extract the answer satisfying the constraints from the least squares solution.
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4
Results

4.1
Hardware setup

We put together a small monochrome camera with a wide-angle lens and an analog transmitter which can beam the video back to the ground.  We used off-board processing with a real-time analog video link from the helicopter which minimized the amount of equipment which actually needed to be in the air for the system to be operational, and kept the flight setup both cheap and light.  The helicopter maintained GPS and IMU information to be used as validation for the results of structure from motion.  As an additional method of gathering video data with ground truth position measurements, we mounted the camera on a PUMA robotic arm.  Using this setup we were able to gather more controlled datasets of a variety of environments and motion profiles without the overhead incurred by operating the helicopter.
4.2
Feature tracking
We began feature tracking by analyzing images with known markers, which could potentially be used to solve the scale estimation problem.  The image was filtered using standard canny edge detection techniques with the Hough transform, shown below.
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Figure 1 – Image filtered with Canny and Hough
The correspondence problem is solved by globally searching the detected features and matching them with the markers through prior knowledge of the marker configuration (4 white boxes arranged in an "L" pattern).  Contours were extracted from the edges, and polygons fitted to these contours. Probable marker locations are extracted from the set of polygons and illustrated below with green circles.  
[image: image8.png]



Figure 2 - Marker correspondence
4.3
SIFT with global correspondence

One approach to the tracking problem is to find SIFT features for each frame and apply the global matching technique described by Lowe to determine correspondence.12  Figure 3 below shows the correspondences marked in green circles between one frame and another one, 40 frames later.  Only features that have been tracked through every frame are displayed.  It may be difficult to see at this resolution, but the correspondence is fairly good; however, there is still an average error of 2-3 pixels in localizing the feature being tracked.  Another disadvantage is this method is increasingly slow as the global database of SIFT features grows.  This problem can be alleviated by retiring SIFT features from the database that have not been seen in a certain number of frames.
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(b)
Figure 3 - Matching SIFT through global correspondence.  (a) is the first frame, and (b) is 40 frames later.

4.4
Corner detection with optical flow

Figure 4 shows the results of a state of the art corner detection implementation paired with Jean Ives Bouguet’s (Intel) pyramidal implementation of the Lucas-Kanade feature tracker.13  First, corners were detected and then optical flow estimates generated.  The corners detected in the next frame were matched with the position estimates.  The execution time for this method was extremely fast, but the corners matched poorly, even between frames very similar to each other.  This was mostly due to the inaccuracy of the optical flow estimates.  Over a period of 40 frames, the tracked features drifted significantly and many were lost completely since the predictions found through optical flow were not accurate enough.  In general, only 40 trackable features per frame were discovered as opposed to over 1000 using SIFT.
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(b)

Figure 4 - Matching corners through optical flow.  (a) is the first frame, and (b) is 40 frames later.

4.5
SIFT with optical flow

SIFT feature detection paired with the Lucas-Kanade algorithm tracked features accurately over many frames.  However, many features were lost because, again, the optical flow predictions were not accurate enough.  Figure 5 below shows the accurate correspondences, but sparse number of tracked features.
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(b)

Figure 5 - Matching SIFT features through optical flow.  (a) is the first frame, and (b) is 40 frames later.
4.6
SIFT with optical flow and Kalman filters

Combining optical flow predictions with Kalman filters proved to be the best solution.  After finding SIFT features and estimated velocities using optical flow for an image, Kalman filters were created with the positions and velocities as the state variable.  This implementation tracked a large number of features extremely accurately and would be a very robust input to the structure from motion algorithm.  This method has several advantages over the global matching scheme including speed, superior localization, and robustness in matching, because the similarity between frames is taken into account.
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(b)

Figure 4 - Matching SIFT features through optical flow and Kalman filters.  (a) is the first frame, and (b) is 40 frames later.

3D Reconstruction:  Our bundle adjustment proved to be sufficiently robust to obtain good solutions from our orthographic position estimates in many different situations.  We were unable to collect world truth data from a helicopter due to an operating system crash on the base station that records the readings from the helicopter’s sensor package, which includes GPS, accelerometers, gyroscopes and magnetometers. Instead, our experimental apparatus for testing the method was a robotic arm with very high precision sensors. This set up was perhaps a better choice for evaluating the performance of the visual system alone, because ground truth is known to higher precision. By mounting the camera on the robotic arm and recording the position estimates according to the arm, and calculating the position estimates of the visual system we developed, we were able to solve for the scale factor. We were then able calculate the errors in each component of our 6 degree of freedom measurement, shown below.  
5
Future Work

Our work was limited by the availability of the helicopter and the short duration of the academic quarter. We had many ideas of possible improvements to the design that we unfortunately didn’t get a chance to implement. Among these are developing a method of integrating new data into previous estimates of structure rather than simply solving over a given window of images.  In addition, an interesting parameterization of the bundle adjustment problem could use angular velocities instead of Euler angles for orientation information. In conjunction with integrating new estimates into past estimates, we are looking into ways of using a estimates of position and velocity from a helicopter simulator to narrow down the search space for the bundle adjustment problem. Currently, the minimization techniques don’t explicitly take into account the fact that the angular velocity of the cameras from frame to frame change smoothly.  After changing to an angular velocity parameterization, it would be possible to include a term into the error function that is proportional to the delta between the free angular velocity and the predicted angular velocity given a Kalman filter prediction combined with a simulator prediction. This would have the effect of giving consecutive camera estimates a “momentum” thereby improving robustness to occasional outliers. Perhaps it is possible to use a particle filter based system that simply evolves the motion of many camera and then spawns more particles around areas of lower bundle error. Therefore, launching the helicopter from a known environment thereby initializing it with good estimates might allow much better results in the predictions returned by the visual system.  Given a situation with known feature positions, this would be easy to implement; assimilating new features gracefully into the estimates might be more difficult. On another side, there is the closing-the-circle problem of feature tracking where a camera that rotates in a circle should pick up correspondences between features seen before and features currently in view.  A method for performing this without having to do a lookup in a global database every time would be to shoot a ray through a current feature and see how many predicted 3D feature points it intersects and comparing the given feature with each of those. Using a KD-Tree structure, shooting the ray would be a fast operation and limit the number of sift feature comparisons required. After deciding that a feature is in fact identical to an old feature, combine them and perform future bundle adjustments using their combined information.  Finally, the use of aerial maps presents many opportunities for improving the quality of the results from an onboard camera.

6
Summary and Conclusion
We have developed a system which allows us to take a video stream typical of that which could be easily obtained from a helicopter without heavy or expensive transmission equipment and find estimated for ego-motion and world structure.  Additionally, we provide a framework for matching camera data with a external scale-sensitive sensor such as an accelerometer to resolve the uncertainty about scale which structure from motion cannot resolve.  This represents substantial steps in the direction of allowing autonomous flight of a helicopter without GPS, and demonstrates that projective structure from motion can be done effectively as a method of localization for a helicopter. Vision-based methods cannot completely eliminate the need for other sensors because of scale ambiguity, but they can work in conjunction to act as a surrogate for GPS and therefore correct positional drift caused by integrating predictions from other sensors. 
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