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Motion Segmentation is the attribution of motion information to elements in a visual
scene.  Here we propose a motion segmentation algorithm that uses the properties of
motion sensitive neurons as inspiration for its fundamental units.  Each unit is treated

as a local Bayesian estimator embedded in a larger belief network.  The heuristics
that we employ to drive segmentation in this network is that there should be at most

one motion at each point in space.

Introduction:
Motion is one of the best understood aspects of visual processing in the brain.  We

know a lot about how motion is perceived by biological visual systems [1].  We know

a surprising amount about how motion information is represented in the brain [2].

We even have some good ideas about how biological systems might extract motion

information from the visual scene [3, 4].  But we know shamefully little about how

motion information is combined across space and time to construct a “motion scene.”

To interpret the visual world, any system must parse the continuous stream of

sensory input into distinct salient elements, and integrate information within an

element but not across elements.  This is true in the simplest case of foreground

background segregation all the way through the difficult task of object recognition.  It

is no different in the realm of motion vision.  To estimate the motion of objects well,

information must be combined across space and time - but not across sources.

Motion elements must be segmented from each other and from the motion of the

background to allow a system to make intelligent judgments about its environment.

But how?  Can we use what we know about biological vision to construct an

algorithm?

Current work [5, 6, 7] has focused on two stage approaches.  In the first stage,

motion elements are grouped in a process of assignment.  Then within each group

object motion is estimated, often from a fixed set of rigid transformations.  Various

techniques based on masking, motion subtraction, or motion layer assignment appear



in the literature with various degrees of success.  While these algorithms can be

computationally efficient, they are both biologically implausible and by their very

nature fail to make the best use of available data.  To make the best use of the data,

we suggest and integrated probabilistic estimation of the motion of at each point in

space.  This approach does not explicitly limit the motion transformations (even

allowing non-rigid motion extraction), or the number of separate object motions in

the scene.  Instead we will use priors of likely motions in real scenes (such as fast

motions are less common than slow motions) and natural constraints on

interrelationship between motion elements (such as there is rarely truly two different

motions at exactly the same point in space).

Broadly, our approach has been to construct an interconnected network of local

motion processors.  Each of these units make a Bayesian estimate of the probability

of local motion given the image data and our priors.  Moreover, the characteristics of

each processing unit will be taken very directly from known properties of neurons in

are MT of the primate visual cortex – the apparent seat of motion processing in the

human brain.  Using belief propagation in a larger Markov Random Field (MRF)

interconnecting these unit, we reason about the motion scene to group, segment, and

integrate information.  Thus our niche is a single integrated probabilistic graph

approach to motion vision.

We find that this approach is able to recover a number of interesting human

perceptual experiences, which more traditional techniques fail to capture.  We find

that our network is able to improve motion estimates by integrating information

across space for elements with a common fate.  Replicating earlier Bayesian motion

work, we find our network estimates the motion of an ellipse as either rotation or

deformation depending on its shape.   Moreover, much like humans this percept can

be drastically altered by the presence and relative motion of spatially remote cues.  In

an expended 2.5D MRF we find that this approach can successful extract multiple

transparent motions and induce illusory separation in depth, much like human

percept.  Ultimately, this raises hope that a full 3D Markov Random Volume might be

able to recover complex volume motion from sparse data much like humans percept.



Approach:
How is it that biological systems extract motion in a unified approach?  We can

answer this question by making some observations about motion processing in the

brain in area MT.  The neurons in area MT are some of the most well studied in the

primate visual system, if not the entire brain.  We sketch some of their basic

properties here to guide our thinking.  Like many neurons in the visual system, they

respond only to part of image, called the receptive field.  These receptive fields tile

the image in largely overlapping fashion, with neurons responding to adjacent

receptive fields adjacent and most densely connected in the brain.  [See Fig 1A.]

Receptive fields tend not to have crisp boundaries, or perfectly symmetric shapes, but

they can be well approximated as Gaussian masks through which the neuron views

the world.  The main point is that the first stage of processing is massively parallel

local motion extraction.

As a whole, we said that area MT processes visual motion - but what does that

mean in terms of individual neurons?  Each neuron appears to be a tuned nonlinear

filter, responding most vigorously to a particular type of motion within its receptive

field.  In simplest terms, each neuron has a preferred direction and speed of motion to

which it responds regardless of spatial scale, image contrast, etc.  Typically MT

neurons give little or no response to motions that differ significantly from this

preferred ideal, and so as a population they encode the relative likelihood of any

possible motion at a particular location.  [See Fig 1B for an example of what a

response might look like if an upward motion were presented.]

A third interesting property of MT neurons is that a great many of them are

sensitive to stereo vision cues.  Most MT neurons respond strongly to motion with

zero binocular disparity – that is to motion in the plane containing the point to which

the eyes are verged.  But many neurons respond better to motion in a band beyond

(negative disparity) or before (positive disparity) this plane.  [See Fig 1C.]  While this

intermingling of stereo and motion information is at first puzzling, we will make use

of this to help solve the motion segmentation problem.

All of this is underscored by the massive interconnection between processing

Thus, it seems that the brain single integrated network approach to motion vision.



Figure 1

Constraints:

If it is indeed the task of the motion vision system to estimate object motion, then

the properties of physical objects (the ultimate source of visual input) provide

important constraints to resolve the ambiguity in the visual scene.

For one thing, because moving things require energy to accelerate and to maintain

their speed in our friction filled world, most things move slowly if at all.  This will be

our first constraint, namely that slower motions should be more likely than fast ones.

Another major idea comes from the fact that objects in the world have spatial

extent.  That means that motion in adjacent regions of the image tends to be

correlated.  This will be our second constraint, namely that motion information should

propagate constructively in space.

A third major constraint is that objects rarely experience infinite accelerations.

Thus, motion tends to be smooth from one point in time to the next.  This leads to our

third major constraint, namely that motion estimates should maintain continuity and

vary slowly over time.

A fourth constraint arises to handle the case of transparent motion, the apparent

appearance of two motions in a single location, there is at most one object, and thus

one object motion, at any point in space.  Rarely, if ever, are there truly two object



motions at a single location in a natural scene.  Therefore, a motion system concerned

with objects need only represent one motion at each point in space.  A visual system

with the capacity to represent several well-defined object motions per point would not

only be wasteful, but critically, would tend to proliferate uncertainty into the most

unlikely of scene interpretations.

Design:

To be specific, we propose the following single integrated probabilistic graph

approach to motion vision.  We will create an ensemble of artificial neurons with

response properties similar to that of real MT neurons.  We will construct these units

so that as a population, these neurons compute a probability distribution over motion

vectors given the local information available in their receptive fields.  These Bayesian

motions estimates will be based on a Gaussian model of image noise, combined with

a prior for smooth and slow motions.  We will in turn use these local estimates as

nodes in a Markov Random Field that combines information across space and

attempts to relax conflict among the nodes.  This process amounts to an implicit

solution of the motion segmentation problem, which groups coherent motion

elements and segregates disparate ones. This can be done by constructing a single

compatibility capturing this notion and then employing Loopy Belief Propagation to

iterate toward a single stable segmentation of the motion scene.

Results:
We constructed a set of local Bayesian motion estimators as follows.  Each

estimator examined only a small image patch.  The sensitivity of the estimator was

very local, operating through a Gaussian mask 11 pixels in diameter.  This soft

bounded window gave very good local motion estimates and avoided boundary

problems.

If the neuron is a Bayesian estimator, then its response can be written as

R
ˆ x ̂  y ˆ d ̂  v 

(t) = P( ˆ v ) P(I
ˆ x ̂  y ˆ d 

(xi,yi,t,di) | ˆ v )
i

,

where the product is over all points i where the window is non-zero.  We assume that

the prior P( ˆ v )  is a symmetric Gaussian centered at zero – biasing us toward small



velocity estimates.   This implements our first constraint, namely that slower motions

should be more likely than fast ones.

 A second common assumption is that the likelihood function P(I(xi,yi,t,di) | v) is

of the form

P(I(xi,yi,t,di) | v) exp 1
2 2 wi(x,y) Ixvx + Iyvy + It( )

2
dxdy[ ]

where wi(x,y)  is the small Gaussian window centered around (xi,yi) and

Ik k
I x,y,t,d( ) .  This likelihood function can be derived assuming smooth motion

within wi(x,y), intensity constancy, and independent Gaussian image noise – though

other likelihood functions can be arrived at with similarly reasonable assumptions [7].

Given the structure of the images, many estimators suffered from the aperture

problem, and have very broad probability distributions along the axis consistent with

their observed window [9].  Given their very local view the motion estimates from

these detectors were often noisy, or the result of local image variation not

representative of global object motion.

The Markov Random Field (MRF) in which these units were imbedded was

constructed specifically to allow the pooling of appropriate information for more

precise motion extraction.  Specifically, our local estimators were arranged in a

hexagonally packed grid with non-overlapping windows, making estimator relatively

independent.  The graph defining the MRF was complete, connecting each node to

each other node.  Interestingly, early implementations only having local connectivity

failed to produce any satisfactory results.  Evidentially, these computations demand

direct non-local interaction of estimators to work properly, making this null result

interesting in its own right.

Inference in the MRF was carried our using Loopy Belief Propagation [10].

Nodes were selected in a random order to message to the rest of the network. Let the

B be the beliefs of the messaging node.  Messages we constructed as 1 + k(B-

mean(B)).  Belief which are favored in B with have a positive (B-mean(B)) and so a

message value greater than 1, while beliefs that are contrary will have a negative k(B-

mean(B)) and so a message value less than 1.   Receiving nodes multiply their own

beliefs by the message and renormalize.  This implements a simple compatibility



function in which the beliefs in B reinforce compatible beliefs in other nodes, and

suppress incompatible beliefs.  The critical aspect of the messaging is actually the

factor k, which varies inversely with the absolute distance between any two nodes on

the graph.  Thus, although information is broadcast globally its relevance in inversely

proportional to spatial separation.  This implemented our second constraint, namely

that motion information should propagate constructively in space and simultaneously

our fourth constraint that, there is at most one object, and thus one object motion, at

any point in space.

To implement or third constraint, namely that motion estimates should maintain

continuity and vary slowly over time, we let our belief carry over from one time step

to the next.  Following the ideas of dynamic Bayesian Networks and Kalman

filtering, the beliefs for the next frame of video were degraded forms of the beliefs

given the previous frame.  If we assume that motions change by adding a small

random Gaussian acceleration, then we can propagate our beliefs forward simply by

convolving our current beliefs with a Gaussian.

Testing:

When humans view a narrow ellipse that is rotating angularly (Fig 2A1), we

normally perceive it as a rigidly rotating shape.  If however we view the same motion

applied to a fat ellipse (Fig2B1), we perceive non-rigid deformation.  This is

surprising given they both movies can be constructed by rigid rotation, and most

motion extraction algorithms recover the same rigid motion.  This dependence of

perceived motion on object shape has been previously explained by global Bayesian

motion estimation [8].  Essentially a prior in favor of smooth and slow motions biases

motion estimates in favor of deformation along the gentle curves of the fat ellipse, if

we assume Gaussian image noise.

We wanted to see whether our local Bayesian estimators, communicating only

through the Markov Random Field, could arrive at the same conclusions as the global

Bayesian approach.  Can we computer this with a single integrated probabilistic graph

approach.  In fact this approach is very successful, even if only given two frames of

video from which to extract the motions.  (Fig 2A2 and Fig 2B2).
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To really test how information is being propagated, we can make use of another

interesting perceptual trick.  If we flank the fat ellipse with dots we can affect human

perception.  Specifically, if the dots move only away from and toward the ellipse [Fig

2C1], they strengthen the percept of non-rigid deformation.  If on the other hand, the

dots, rotate along with the ellipse [Fig 2D1] they abolish the percept of non-rigid

deformation, and the fat ellipse now beings to rotate rigidly like the narrow ellipse did

before.  This would not be surprising at all if the dots were in contact with the ellipse.

Then they would create corners where the aperture problem would be solved and

induce the above motion.  The interesting thing is that for human vision this effect

persists even if the dots are not connected by instead float some distance away from

the edge of the ellipse.  This dependence non-local image information has also been

previously explained by global Bayesian motion estimation using a layering approach

[8].   But again we wanted to see if we could accomplish this with a single integrated

probabilistic approach.

Again we find that this integrated probabilistic graph approach does well.  Figure

2C2 and 2D2 show the responses our network gives to each of the two cases.  As we

would expect, in the case where the dots move radial, the impression of deformation

is only enhanced.  In the second case where the dots rotated angularly, the precept of

deformation is largely disturbed, tending more toward rotational motion as in Fig

1A2.

We can do more extensive testing by using a different class of example stimuli.

Figure 3A shows a field of well separated Gaussian blobs.  Each blob drifts in a

particular direction and velocity.  If the blobs all drift together, the motion

information should be grouped across them.  This allows much better estimation of

the motion than would have been afforded by considering any single dot in isolation.

Figure 3B, shows that our approach does the integration properly, getting good

estimates of motion at points where there is little data, or in fact points where a dot

has been but no longer is
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This first result is not very impressive, because this could have been

accomplished simply by integrating all the information across the scene.   We can

push the model much further, if we divide the dots into two populations, each moving

in a different direction.  Figure 3C and 3D show that our graphical model (now with

two nodes at each point in the image) can simultaneously extract both motions, only

integrating information across data that share a common fate.  To see better how this

happens we can look at the raw probability distributions over speed at one such pair

of nodes  Figure 3E and 3F show the beliefs at a location where there is currently

motion up and to the right, but recently there was motion to the left.  The belief in 3E

is sharp and well formed, supported by its neighbors in the MRF and reinforced by

the imaged data at that particular moment.  The belief in 3F however, has no data to

directly drive it, but lives on though temporal persistence in the network and the

support of its neighbors, some of whom do have data presently consistent with its

belief.  This double extraction without an explicit masking or subtraction is very

impressive and displays the strength of this graphical approach.

Discussion:

We have shown that a single unified probabilistic graph approach to motion

grouping segmentation and integration is tractable.  We can in fact follow the lead of

the biological vision approach of are MT, where simple local motion processing is

made rich by dense interconnections of massively parallel processors.

The primary drawback to this approach is the intensity of computation, and the

resulting slowness on current serial processing architectures.  This is approach is

completely out of the question for real time systems, or even non-real time systems

with large amounts of data.

Where it not for computational boundaries, we are hopeful that this work could be

taken much further in the form of a 3D Markov Random Volume, capable of

extracting three-dimensional motion, on three-dimensional surfaces.  This would

allow this approach to come into its own, extracting motions not readily accessible

given current algorithms.  It may be that there are some optimizations that can be



made in this type of computation to facilitate implementation in the near future, but

presently this goal remains out of reach.
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