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Media broadcasts often require personally-identifiable visual information to be 
obfuscated to preserve anonymity of witnesses, suspects, and minors. Currently, this 
process requires a manual post-processing step, incurring a significant delay that 
prevents content from being televised live. The media filtering problem imposes 
unique constraints on the object recognition problem, particularly the inability to 
pre-train the system from multiple views of the target object. Using scale-invariant 
feature transforms, a clustering system that can automatically identify and 
obfuscate the target object in subsequent video frames was developed. Using 
dynamic learning of target features along with “target” and “decoy” feature 
databases and a weighted voting scheme, the system maintains awareness of similar 
subjects, avoiding obfuscation of incorrect objects while tracking the target.  The 
system uses an ellipsoid approximation of the object to track through 3D rotation 
and an active contour correction of its projection onto the image plane to determine 
the feature learning region in each frame.  The system demonstrates the 
effectiveness of using SIFT features to track human faces as well as false objects.  
The system generates smooth, continuous movement of the obfuscation region 
across frames.  
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1 Introduction 

Live media broadcasts often require personally-identifiable visual information 
to be obfuscated to preserve anonymity (faces, license plates, addresses, etc.). This 
is especially true when video footage includes minors or witnesses. To do so for a 
stationary interview is simple. However, if motion relative to the camera is 
involved, a painstaking human post-processing step is currently required before 
broadcast: the subject must be manually censored.  This results in a significant delay 
and prevents many programs from live airing.  

The right and desire of the viewing public to see events broadcast in real-time 
must be balanced with an individual’s right to privacy.  This conflict is most 
pronounced in broadcasts of sensitive events involving legal culpability such as 
police actions and court proceedings.  Viewers demand live broadcast of these 
events, yet the privacy of suspects, victims and witnesses must be preserved.  It has 
been concluded that “Broadcasting the identity of a crime victim most often only 
adds to the person's grief, anguish and trauma” [CBC03], while broadcasting the 
identity of a suspect can jeopardize the fairness of criminal proceedings.  
Governments have sought reasonable compromise [TEXAS02], but the conflict 
remains, exacerbated by the fact that preservation of anonymity demands a 
broadcast delay of minutes to hours. 

 

Figure 1: Pixilated image of a 13-year-old murder suspect turning himself in to the 
police (the youth's face has been obscured because he is a juvenile) 
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Preservation of privacy is not necessarily guaranteed by a system limited to 
facial occlusion. Additional scenes may require obfuscation of other personally-
identifiable information (PII), such as license plates or addresses. By enabling a 
camera-operator to identify PII while filming, automatic object obfuscation could 
begin, allowing the output of such a system to be broadcast live. A courtroom scene 
could be broadcast live without the risk of privacy violation if the camera or 
protected subject moved. 

In the live broadcast scenario, the primary objective is to enable a camera 
operator to rapidly locate and specify an object in the first frame, then automatically 
track and obfuscate the object throughout the stream.  This scenario presents some 
unique conditions that differentiate it from other face and object recognition tasks: 
 

• No pre-training.  Data about the target object must be acquired 
immediately prior to broadcast in the first set of frames.  Only one view of 
the complex 3D object is available.  Target objects are present at the start 
of broadcast, and can be specified by a camera operator using an integrated 
interface. 

• Scene transformation.  In live broadcast, the camera and object position 
and orientation are independently dynamic and unpredictable.  Tracking 
must be invariant to translation, rotation, scale and lighting changes.   

• Rotation.  The features in subsequent frames may reflect a completely 
different region of the primary target object due to rotation. 

• Reacquisition.  When the target object is temporarily occluded, out-of-
focus, rotated out-of-view or out of the scene in subsequent frames, no 
obfuscation is required.  In all cases reacquisition must occur immediately 
and obfuscation resumed once the object re-enters the visible scene. 

• Differentiation.   Similar objects can enter and leave the scene throughout 
this process, yet the system should consistently track only the target object. 

• Temporal coherence.  While movement in the scene may be rapid, 
reasonable temporal coherence between object features can be assumed.  
Data is recorded at 30 frames-per-second, and it can be assumed that the 
camera operator will be professional and deliberate. 

• 2D result.  The end result need not be a full 3D reconstruction or 3D 
transformation.  The goal is the obfuscation of the element’s identifiable 
features in image-space. 

 
Existing solutions deal separately with variations of two basic problems: 

tracking and object recognition. While these methods may be partially applicable, 
our specific global tracking problem differs in several significant ways from the 
problems addressed by existing solutions. 
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Tracking is traditionally performed using gradient descent techniques to 
compute optical flow, such as those presented by Lukas and Kanade. These methods 
are fast and provide an excellent solution to the local tracking problem. These 
methods fail, however, when objects rotate beyond a threshold or temporarily leave 
the local scene-space. In the case of target loss, [CHANG98] stops camera motion 
and performs a continual search for the object based on its most recent visual 
template. This works well if a stationary object is temporarily occluded by an 
intermediate object, but fails if the camera or object has changed orientation when 
the object returns to the view. Our work requires a more robust global solution. 

Object recognition is traditionally dealt with as a separate problem. Many 
methods exist for the recognition of objects, ranging from broad 3D object 
recognition to specific applications for human faces, etc. Several approaches to 
facial recognition use statistical methods to train on specific faces.  [SCHNEID00] 
requires training on images of each facial orientation.  [WISKOTT97] describes a 
method using Elastic Bunch Graphs that does not require per-face training but is not 
illumination invariant.  In these cases, either the algorithm is designed to detect a 
generic object type, requires an extensive database of pre-acquired data, or does not 
enjoy the transformation invariance of SIFT features. Our particular problem 
precludes the availability of multiple pre-training views of the target region, and 
requires immediate and on-going object capture and recognition. 

Additionally, structure from motion has been used to determine the three 
dimensional scene as the solution of a linear system. It requires, however, that the 
object or camera be stationary, or have its rigid transformation known explicitly 
beforehand. These simplifying assumptions cannot be applied to this problem as the 
movement of the camera or object will not be known.  It also necessitates the prior 
acquisition of a sufficient number of frames to generate the linear system. Tracking 
must begin immediately, and cannot wait for the acquisition of multiple frames. 

We sought to solve the global tracking problem using object recognition and 
constrained structure from motion under the following constraints:  

• No pre-training data is available 
• Tracking must be successful through occlusion, significant rotation, and 

non-rigid deformation (talking, changes in facial expressions) 
• Differentiation from other objects, including other faces, is necessary 

This would enable the creation of a simple interface that allows a camera operator to 
identify an element in view (such as an individual’s face) and mark it for automatic 
obfuscation in the subsequent live video broadcast. The system will track the object 
automatically as it moves, concealing it via blurring or image overlay. 

Our approach combines traditional SIFT features [LOWE03] with some novel 
modifications that track the specified object through a variety of scene 
transformations.  Two separate databases of SIFT features are maintained: a ‘target’ 
database of features from our target region, and a ‘decoy’ database of features that 
have shown to be close false matches which are simultaneously tracked to ensure 
true positive matching.  Iterative applications of the Hough transform allow objects 
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which are similar to the target (e.g. other faces in the scene) to be simultaneously 
identified and tracked using the ‘decoy’ database, preventing obfuscation of the 
wrong object if the primary target is occluded. Iterative application of the affine 
transform in each frame adds new target and decoy database features, based on 
where the initial target region and subsequent competing feature clusters are 
currently located. 

In order to prevent background features in close proximity to the target region 
from being falsely included in the database of target features, an active-contour 
snake algorithm is used to more closely fit the target object. In addition, an 
ellipsoidal approximation and cylindrical projection are used to account for the fact 
that the actual face being tracked is not planar, and to provide better true tracking 
across rotation as a simplified structure from motion implementation. In conjunction 
with this, the angle of rotation of the feature region from the initial to current frame 
is determined. 

Our results showed the robustness of SIFT feature detection and Lowe feature 
descriptors. They proved to be an excellent choice for our implementation and 
particularly prominent within human facial regions.  Individual features remained 
detectable over reasonably wide affine transformations (often with rotations in 
excess of 40°) and moderate scale changes.  Objects tracked extremely smoothly 
across frames of motion.  Reacquisition after occlusion was successful as well.  

The system yielded highly consistent regions and tracked competing ‘decoy’ 
faces across many frames, even when the original target was occluded or outside the 
camera view.  This method exhibited significantly more invariance to rotation than 
prior methods. 

2 Approach 

2.1 Background 

Our approach applies the affine object recognition model using scale-invariant 
features (SIFT) described in [LOWE03] to the global object tracking problem.  
SIFT features are identified by first creating an image pyramid of difference-of-
Gaussians and identifying prominent maxima and minima in scale-space. 

Orientation, scale, and subpixel-accurate position are determined for each 
feature and various heuristics are incorporated to remove unstable features. 
Gradient-based descriptors expressed as 128-element vectors are ascertained for 
every prominent, stable feature. 

SIFT features can maintain prominence over a wide range of transformations 
and lighting conditions, and their gradient-based descriptors have shown to be 
highly discriminatory over other methods [MIKOLAJCZYK03].  Lowe’s method 
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uses a Hough-transform voting scheme to determine object poses, and proceeds to 
iteratively build an affine approximation using a least-squares method. 

SIFT feature matches are calculated as follows.  Each scene feature is 
compared to every feature in the target feature database using a Euclidean cost 
function across the 128-element descriptor vector.  The top two scoring matches and 
their scores are retained.  If the ratio of the second best score to the best score is less 
than the match score ratio threshold, the best pair is considered a true match.  A 
lower match score ratio threshold produces fewer, more accurate matches, while a 
higher match score ratio threshold produces more, less reliable matches. 

Due to the frequency of false matches and imprecision of feature locations, a 
robust method is needed to track the object over time, continually determining a 
new target region.  Once features are recognized, many robust fitting methods are 
available to cluster them into objects. Techniques such as RANSAC or Least 
Median of Squares are potential candidates, but have been found to perform poorly 
when the ratio of cluster inliers to outliners falls below 0.5.  The Hough transform 
cluster method used in [LOWE03] and described below was shown to provide better 
performance in this case. 

A Hough transform is used to detect the object elsewhere in the scene through 
feature clusters. Large Hough pose bins are used to accommodate rigid and non-
rigid transforms.  

The Hough pose bin with the most votes is chosen as the pose of the primary 
object in the scene. The corresponding affine transformation is then computed from 
the agreeable feature locations in the bin using the least-squares approach described 
in [LOWE03]: 

 
                A:         x:             b: 

 
 

 
 

If the transformation is agreeable with a sufficient number of features, this 
transformation is used to transform the primary target ellipse. 

A Hough table storage object was implemented efficiently as a hash table. This 
method yields the first-line-of-defense against false feature matches. As described 
in [LOWE03], additional refinement is performed by iteratively arriving at a correct 
affine transformation: if transformed database features are greater than a minimum 
threshold distance away from their matched frame counterparts, they are removed 
and a new, more accurate affine transformation recalculated. 



Assisted Media Filtering submitted to Computer Science 223B Computer Vision : 
3/12/2004 7/22 

The primary problem with applying the Lowe object recognition approach to 
real-time media filtering is its dependence on pre-training from multiple views 
around the object.  In the media filtering problem, pre-training is impossible – it 
must begin obfuscation following the first frame.  At the same time, the media 
filtering problem benefits from the assumption that the target object will not differ 
drastically in pose from one frame to the next. 

2.2 Dynamic Learning 

 
Our solution incorporates a method for dynamic learning of features from 

subsequent frames.  A SIFT feature database is used to store and track features over 
time.  Since some rotation/illumination/expression change may have occurred from 
each frame to the next, a new frame provides an additional ‘view’ with which to 
enhance the target object feature database dynamically, and prominent SIFT 
features found in this slightly-shifted region are added to the database accordingly.   

In the first frame, all features detected within the user-defined region are added 
to the database.  For each subsequent frame, the algorithm proceeds in two phases:   
tracking and dynamic learning.  In the tracking step, the Lowe approach is used – 
features are detected in the current frame, matches are found between the current 
frame and the feature database, and a Hough transform and affine approximation are 
used to calculate the most likely new position of the target object. 

In the dynamic learning step, the affine approximation is used as the basis to 
calculate the new feature learning region.  Calculating the new feature learning 
region from the affine approximation is described in more detail below.  The feature 
learning region is then searched for features that were detected but unmatched, and 
these features are added to the target database.  Only unmatched features are added 
to avoid storage of multiple copies of the same or similar features.  Their descriptor 
pose is stored in frame 1 object space, which is later represented by an ellipsoidal to 
cylindrical map.  

This novel approach allows the system to dynamically ‘learn’ about features in 
new orientations as they arrive, while at the same time beginning obfuscation 
following the first frame.  Because the object will not change drastically in a single 
frame, this approach enables the system to continuously track the object over time. 

Video noise and compression artifacts have a tendency to produce SIFT 
features of detectable prominence.  These features will not produce useful matches 
in subsequent frames because they do not represent true object features, yet they 
will incur additional computational cost in every subsequent frame.  In order to 
filter the database of these useless features over time, a pruning mechanism is 
employed.  For each feature, the database tracks the number of frames elapsed since 
being added to the database.  If a feature is matched again within ten frames, it is 
marked for permanent retention.  Otherwise, it is deleted after ten frames.  Because 
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the human head only has a finite number of recognizable SIFT features, pruning 
ensures that the database size remains within a reasonable limit. 

For this system to perform well, an accurate learning region is imperative. If the 
region includes a sufficient number of features outside of the actual target object, 
tracking in subsequent frames will be adversely affected. If the region is too small, 
however, important features may be missed. These features on the edge of the 
region are key to tracking an object through rotation.  

2.3 Determining Feature Learning Region 

2.3.1 Ellipsoidal Approximation 

 
Were the full 3D model of the target object known, determining the exact 

learning region would be trivial. This convenience is not feasible in the live-
broadcast scenario; at best, the user can define a simple axis-aligned 2D primitive 
(e.g. rectangle, ellipse) on the first frame only.  The first frame yields no insight into 
3D structure without making significant simplifying assumptions. Tracking the 
human face is a unique problem – it is not purely planar, cubical, or ellipsoidal, and 
all faces have different 3D structure. Assumptions made by more general structure-
from-motion problems are not valid in this case: there can be camera motion as well 
as motion of objects in the scene. The additional live-broadcast requirement that 
tracking begin at frame 1 provides insufficient constraints to compute structure-
from-motion. Therefore, certain simplifying assumptions about the object’s 
structure must be made and then compensated for using refinement methods. 

The affine approximation described in [LOWE03] makes the assumption that 
feature points in a view lie in a plane.  This is certainly not the case for the human 
head. Although features along the face reflect a more planar distribution than the 
rest of the head, even facial features lie far from a given plane. Thus, the planar 
approximation yields excellent results for scale and translation transformations as 
well as rotation perpendicular to the viewing plane. It is clearly insufficient, 
however, when tracking objects through rotation in axes parallel to the viewing 
plane’s coordinate axes. 

 



Assisted Media Filtering submitted to Computer Science 223B Computer Vision : 
3/12/2004 9/22 

Affine approximation of a face at <10° of 
rotation from the first frame. 

Affine approximation of a face at >80° of 
rotation from the first frame. 

Figure 2.  Affine transformation illustrated on a human head over 90° of rotation from 
the initial frame. 

 
Clearly, a more robust approximation is necessary. The applicability of a series 

of attempted approximation methods are described in the results section. The most 
successful approach involves an ellipsoidal approximation of the head and 
establishing a cylindrical object space in which to store features.  The initial user-
provided axis-aligned ellipse is assumed to encompass a certain angular range in the 
view at degree zero (between 90° and 180°). 

 

 
Figure 3.  Graphical illustration of the ellipsoid to cylindrical mapping. 

 
Instead of storing features relative to their locations in frame 1, features are 

stored in a combined 360° cylindrical mapping of the target object. In every frame, 
approximations from n overlapping views are computed by projecting database 
features from the cylindrical map onto the ellipsoid, and then re-projected onto the 
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2D image plane. Affine approximations of the transformation between projected 
database features and detected feature matches yield a series of new target regions 
reflecting potential object rotation angles. New features can then be projected back 
to their frame 1 location, and based on the view-region they reside in, projected 
back onto to the cylindrical map for incorporation in the target feature database. 

One remaining problem stems from that fact that these view regions are planar 
approximations of curved sections of the ellipsoid. These approximations therefore 
remain biased by point distribution. For example, in the first few frames of the first 
head rotation, the zero-degree view has an even distribution of features throughout 
its view-region. The adjacent views have only the features that are shared with the 
zero-degree view. This causes a plane-estimation that reflects an insufficient degree 
of rotation, thus yielding a target region that exceeds the true extents of the object. 

Therefore, a strict heuristic is necessary to ensure that image features are added 
from view-regions that do not exceed the object’s boundaries. Using eight evenly-
spaced overlapping view-regions with ranges of 90°, it can be assumed that no more 
than three and no less than two regions are completely visible in a given frame 
where the object is present and not occluded.  

The assumption can be made that a head does not actually exhibit non-uniform 
scaling in 3D. Therefore, all non-uniform scaling factors of an affine transformation 
approximation must indicate a rotation beyond the central angle of that view. The 
magnitude of this angle can be calculated from the scaling factor, but the direction 
of rotation (clockwise or counterclockwise from the camera’s view) is indiscernible, 
preventing the system from identifying a new valid target region.  

The primary elliptical region (the region closest to the actual direct view angle) 
can be identified by the ratio of its affine scaling factors: the region with closest 
ratio to the original user-provided ellipse reflects the primary angle. This view-
region is “safe” to use for adding new features to the target feature database.  

Whichever of the primary view region’s two neighbors yields the largest affine 
scaling ratio indicates the direction of true rotation from the primary angle. This 
view region can also be considered “safe” for adding new features as long as a 
sufficient number of points are available to generate an accurate affine 
transformation. 

2.3.2 Use of Active Contour 

Any elliptical/ellipsoidal approximation is somewhat inaccurate for a human 
face, especially when not viewed from the front. To compensate for this, the 
transformed elliptical target region must be refined to match the silhouette of the 
object. 

The active contour algorithm, or ‘snake,’ employs an energy minimization 
strategy to dynamically attempt to closely fit an object whose boundaries have an 
appreciable gradient [ITKOWITZ].  The energy of the snake can be represented 
parametrically as: 
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The integrals represent summing over all the points in the snake, and 

Econt = Snake continuity 
Ecurv = Snake curvature 
Eimage = Image forces (e.g., edge attraction) 

 
The above terms in the energy function have the following effects: 

• Minimizing snake continuity functions to shrink the snake by keeping its 
points close together. It is measured as the difference of the distance 
between the proposed snake point and the previous existing snake point. 

• Minimizing snake curvature functions to keep the path between points as 
smooth as possible by penalizing large changes in direction at each snake 
point. 

• Minimizing image forces penalizes the snake for attempting to cross large 
image gradient boundaries. 

 
The snake is represented by a set of points around the closed contour. We use 

the elliptical contour created by the affine transformation of the original target-
bounding ellipse. This is discretized into points representing the initial starting 
position of the snake. 

Snake movement is processed in passes, with each point potentially being 
moved in each pass. As each pass finishes, the snake moves down the energy 
gradient, finishing in the lowest energy state as defined by the snake energy 
equation. 

During a given pass, the snake points are taken in turn, and each pixel in a 
square neighborhood region around the point is tested as a potential new location 
for that snake point. The energy function is evaluated at each neighborhood point, 
and the snake point moves to the location which possesses the least energy. Our 
snake stops attempting to improve its position after the length of the path around the 
snake has not changed for a specified number of passes.  

In concert, these forces allow the snake to shrink smoothly, eventually coming 
to rest around a region of significant image gradient. This works well when trying to 
shrink the learning region to include only the subject’s face, and not capture 
background features adjacent to the face. 
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2.4 Decoy Feature Database 

 
Many usage scenarios require the system to discriminate between multiple 

similar objects in the scene. In the most challenging cases, the target is occluded or 
leaves the scene and several decoys will remain. In the absence of the true target, 
the algorithm may identify a false subject as the target. The ability to track and 
discard these potential false-positives throughout the video is a unique component 
of our algorithm. 

Tracking of false targets is accomplished with the use of a second feature 
database – the decoy database.  At every frame, once the most prominent Hough 
cluster is selected, all other orientations with a large number of matching features 
are considered a potentially hazardous cluster.  Another Hough transform is 
performed on all the remaining matches not present in the previous cluster, and an 
affine approximation is performed.  If the new region is sufficiently far from the 
primary target, it is treated as a decoy cluster, and an elliptical region around this 
cluster is used as the learning region for undiscovered decoy features. Unmatched 
features within this region are added to the decoy database.  This process is repeated 
and decoy features are added until the winning Hough transform contains fewer 
than 5 features, signifying that no decoy clusters remain. 

In order to increase accuracy during the tracking phase, detected features are 
compared to both target and decoy databases and participate in the Hough voting 
scheme. Unlike the target features, features that match with the decoy features vote 
with a negative weight (-1). They vote against a certain pose, preventing incorrect 
clusters from being obfuscated.  As a result, false targets receive low or negative 
scores and are not considered as candidates for the new target location. 

This unique approach allows the system to remain aware of all potentially 
hazardous objects in the scene. Combined with the innate ability of SIFT features 
and descriptors to discriminate between similar objects, this system prevents 
incorrect obfuscation. 

2.5 Hardware & Software 

Control data was collected using a Sony DCR-TC120 Digital Video Camera. 
Two gigabytes of DV-Compressed data was collected at 720x480 resolution. 
Collected data includes clips with varying: 

• Indoor and outdoor lighting conditions, including transitions between 
them. 

• Subject motions into and around camera view 
• Subject rotations 
• Camera motion/zoom 
• Full/partial occlusion by objects and other subjects 
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Data was separated into clips and converted into uncompressed AVI format for 
subsequent SIFT processing. All development was performed in Java.  SIFT 
keypoints were calculated using Lowe’s SIFT keypoint generation code. 

3 Results & Discussion 

3.1 Feature Matching 

Our results confirmed that SIFT is an excellent choice for tracking of faces as 
objects in a dynamic scene.  As anticipated, SIFT features were invariant to 
moderate changes in rotation, scale and position.  SIFT features proved highly 
precise and false-positives proved to be less of a problem than anticipated, even 
when multiple faces were present in a scene.  The algorithm worked well with both 
indoor and outdoor scenes. 

The feature match score threshold had a large effect on performance.  In 
general there was a tradeoff between the frequency of matching the target object, 
and the acceptability of occasional false matches.  When the match score ratio 
threshold was set low (0.36), few false matches were produced when the target 
object was present in the scene, even in the presence of decoys.  However, few 
features were added to the decoy database and few decoy clusters were tracked, 
preventing the algorithm from detecting when the primary object would leave the 
scene. 

With a relatively high match score ratio threshold (0.64), many features were 
produced and false clusters were identified.  However, it also had the undesired 
effect of adding less-than-perfect features to the target database, reducing the 
accuracy of target matching. 
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Figure 4.  The first image was produced with a low match score ratio of 0.36; second 
image was produced with a ratio of 0.64. 

 
The two images above illustrate matching of target and decoy objects.  Features 

in Green represent matches to the target database in the affine transform of the 
winning Hough bucket (the target object), while features in red represent matches to 
the decoy database.  The green ellipse indicates the detected primary target object, 
while the red ellipses represent false clusters.  Gray rectangles represent unmatched 
features.  The green ellipse is produced by the target feature affine transform, and 
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the yellow outline, generated by the snake algorithm, represents the frame’s final 
learning region. 

The first image was produced with a match score ratio of 0.36 and did not 
identify false objects.   The second image was produced with a higher match score 
ratio of 0.64, and as a result the false face in the background was correctly 
identified. 

3.2 Pruning 

 
Database pruning proved vital to maintaining good performance over long 

sequences of frames.  Without pruning, the database grew linearly as the additional 
features gave rise to additional feature learning regions.  Pruning stabilized the 
number of stored features over time without producing a noticeable change in 
recognition quality.  In fact, pruning actually increased recognition quality in certain 
cases by removing extraneous features that would generate worthless or misleading 
matches.  

The following graph illustrates the effect of pruning on the size of the target 
feature database for a typical video stream. 
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Figure 5.  Good database size after each frame, with pruning enable and disabled. 
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3.3 Region Consistency 

 
The dynamic learning approach in which features were added every frame 

produced highly consistent obfuscation regions.  The obfuscation region rarely 
exhibited major changes in size, shape or position from one frame to the next, and 
the region’s movement exhibited continuity comparable to local optical flow 
algorithms such as Lukas-Kanade.  This positive behavior occurred in spite of the 
fact that the region is always calculated without taking into account its location and 
orientation in any frame other than the initial frame. 

3.4 Active Contour 

 
The coefficients of the snake energy components were experimented with, 

and the optimal coefficients were found to be α = 3.0, β = 0.4 and γ = 1.1.  Using 
these values, the snake performed well in both indoor and outdoor scenes, hugging 
the face near the hairline and not extending out beyond the head in any direction in 
most frames. 

3.5 Rotation & Occlusion 

 
The system exhibited invariance to rotation and occlusion.  In the following 

example, the subject exhibits 90° of rotation, roughly 25° of which are occluded by 
an interfering object.  

 

 
Figure 6.  Outdoor scene initial frame. 
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The system correctly recognized that the target object is not present in the 

intermittent frames where the target is occluded. 
 

 
Figure 7.  Outdoor scene – intermittent occlusion. 

 
The affine method still successfully tracked the object following the occlusion.  
 

 
Figure 8.  Single-view affine approximation. 

 
Nonetheless, it is clear that the affine approximation at this angle only covers 

the half of the object that was visible in the first frame. The ellipsoidal 
approximation method with cylindrical projection correctly identifies the new 
viewing angles, obfuscating the entire face: 
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Figure 9.  Object tracking using ellipsoidal approximation and cylindrical mapping. 

3.6 Other Approximations 

 
A series of attempts were made to discern 3D rotation in axes parallel to the 

image coordinate axes using linear algebra, statistical, and analytical methods. The 
results of these methods were poor compared to the ellipsoidal/cylindrical 
projection solution described in the approach section. Nonetheless, results of these 
methods indicate which approximations do or do not suffice for accurately tracking 
a human head through 3D rotation. 

As described earlier, all non-uniform scaling factors of an affine transformation 
approximation must indicate a rotation around an axis parallel to the image plane 
coordinate axes. The magnitude of this angle can be calculated from the scaling 
factor, but the direction of rotation is indiscernible from an affine transformation. 

Several approaches were implemented for computing a complete 4+ point 
homography (8 DOF) representing the database-to-image transformation instead of 
the affine transformation (6 DOF). The idea behind this approach was to ascertain 
the direction of an object’s rotation based on the relative scaling at different region 
extents. 

Different homographies were computed using a variety of SVD and least-
squares methods including those described in [GARCIA02], [CRIMINISI97], and 
[MA03]. Each homography yielded a different approximation, many of which 
accurately transformed the database features to the target image within a very small 
error threshold. Nevertheless, none of these homographies consistently transformed 
the target region to a reasonable orientation and position. Results indicated that a 
combination of factors caused these methods to fail. The extra degrees of freedom 
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permitted by the homography yielded far more vulnerability to the non-planar 
nature of the human face. Additionally, the resulting homography was vulnerable to 
false matches; the extra degrees of freedom prevented the use of an iterative 
approach for removing outliers similar to the one used in the affine approximation 
method. 

Analytical approaches comparing point transformations relative to the region 
center yielded no statistically significant pattern that could be used to determine 
rotation angle other than rotation about the axis perpendicular to the image plane. 
Results indicated that this was due to differences between facial anatomy and a 
plane, and head shape and a perfect ellipsoid.  

Methods taking into account point distribution (point distributions weighing 
heavily on the left side of an affine-transformed region would indicate rotation to 
the right) were adversely affected by any degree of occlusion. 

The most successful solution (described in the approach section) yielded 
promising results, and in a few cases successfully tracked a human head through a 
rotation span of up to 240° (120° in each direction). The model failed for larger 
rotations, but would successfully reacquire the object on the other side. In other 
words, one could expect that from a front view in the first frame, all recognizable 
features would be obfuscated with the exception of the back of the head. 

Incorporation of the ellipsoidal approximation and cylindrical mapping 
generally reduced stability of the tracking region, as any inconsistency between the 
true head and the elliptical approximation would accumulate error as the magnitude 
of the rotation angle increased. These smaller, 90º view regions also contained 
fewer features than their ~180º degree-wide affine counterparts. This mandated 
larger Euclidean-distance thresholds for computing the affine transforms, frequently 
resulting in warped views on the periphery. To compensate for this effect, additional 
constraints were placed on generated affine transforms. 

Improvements on the region-selection heuristic, combined with a more accurate 
oblong-ellipsoid model could likely increase this result to a full 360° of rotation and 
improve consistency across frames. 

4 Future Work 

In order for this algorithm to be practically applied, a real-time implementation 
would need to be developed that could be integrated with video camera hardware.  
Our Java implementation operates within an order of magnitude of real-time, and a 
sufficient performance improvement could be achieved by a native hardware 
implementation. 

Motion blur was found to clearly reduce the number of recognized SIFT 
features in an image. In most cases where the object was still discernable, there 
were sufficient features to generate a proper affine transform. 
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In general, motion blur can be reduced by increasing shutter speed via more 
expensive hardware. We propose the following potential solution as a pre-
processing step, in software, to improve SIFT detection in cases of camera motion 
blur: 
 

1. Compute optical flow using existing image pyramids and gradient-descent 
methods 

2. Correct for motion blur in the optical flow using camera’s intrinsic 
parameters as described in [TIMONER01] 

3. Use a high-pass sharpening filter scaled along the direction of optical flow 
across the image. 

 
This method can potentially provide far better results than a generalized high-

pass filter over the entire image. An unscaled filter would likely cause sharpening 
artifacts in unblurred sections of the image, resulting in similar SIFT errors as found 
with compression. This filter guarantees that only moving areas in the image are 
sharpened. The sharpening is based upon a Gaussian model for motion blur. 

5 Conclusion 

SIFT proved highly effective for identifying faces in a dynamic scene.  It rarely 
produced false matches when the target object was present, even in the presence of 
other faces.  The dynamic learning approach produced smooth and consistent 
movement of the obfuscation region, despite only using the initial frame in 
calculating the region’s transformation.  The decoy feature database and negative 
voting scheme proved effective at avoiding improper obfuscations when the target 
object was occluded or not present in the scene. While developing a heuristic that 
correctly handles any human head through 360° of rotation remains a challenging 
problem, our combination of an ellipsoidal approximation and active contour show 
promise as the basis for future work. 
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