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Abstract: We present an algorithm for creating globally consistent three-dimensional maps from depth fields produced by active stereopsis.  Our approach is specifically suited to dealing with the high noise levels and the large number of outliers often produced by such systems.  Range data is preprocessed to reject outliers and smooth vertex normals.  The point-to-plane variant of ICP is used for local alignment, with weightings that favor nearby points.  Global consistency is imposed on loops by distributing the cyclic discrepancy optimally according to the local fit correlation matrices.  The algorithm is demonstrated on a dataset collected by an unstructured-light active space-time stereopsis system.
12 March 2004

1 Introduction


Giving robots the capability of generating accurate maps of their surroundings is widely seen as one of the most important problems in robotics.  Such maps are used for localization and path planning, and might be used as an important information source in broader frameworks of artificial intelligence, providing concrete sets of measurements to associate with the notions of objects or locales.  The two problems of mapping and localization are generally seen as two facets of the same fundamental problem and a great deal of work has been done in this field over the course of the past two decades.
Most concrete work in mapping and localization has been performed using direct range sensors, such as time-of-flight laser range scanners and sonar.  Laser scanners have the advantage of producing reliable data with well-understood noise that is independent of the distance to the target, but they are heavy, expensive, and can only scan a single line at a time.  This requires the robot to move slowly through its environment and places great importance on independent odometry estimates, which may be hard to obtain in certain cases.  These limitations have retarded wider application of the existing technology.
Stereo vision systems are a natural choice for such an application but conventional stereo systems provide very noisy data with large gaps in low-texture regions.  Recent work in active stereopsis has sought to solve this problem by projecting light patterns into the scene, providing needed texture to chromatically uniform regions and generally improving the correspondence.  The results from such systems are dense range fields that, while processor intensive to compute, can be acquired in real-time.  This sort of data is precisely what is needed to overcome the limitations of the laser-scanner mapping systems currently in use.  Active stereo systems have been used in the computer graphics field for acquiring near-field three-dimensional models of small objects but little work has been done to use such sensors for mapping and localization.
There are several important advantages to using stereopsis-based depth-field measurements instead of laser range scanner measurements for mapping and localization.  The first is that stereo systems are capable of yielding very accurate near-field measurements, creating the opportunity for mapping small-scale structure in areas of particular interest.  Laser scanners have the same noise levels at all ranges and are not capable of the same near-field precision.   The second main advantage is the high bandwidth of these sensors.  Working at 30-Hz they can produce on the order of 105 independent range measurements from each frame, evenly distributed over the field of view of the camera.  This last feature is particularly nice for constraining the various modes of transformation possible between any two robot poses.  In general, more sensor data means greater algorithmic robustness and fewer mistaken estimates.  
Presently this large volume of data comes in a very noisy form.  False positives are common and seemingly meaningful but incongruous correlations can be made when viewing reflective or dynamically lit surfaces.  As a counter-point to the near-field accuracy mentioned above, noise levels also increase markedly with the distance from the cameras, making long-range measurements unreliable cues for localization.  This is in stark contrast with laser-scanner systems for which long-range measurements are the most useful for solving the local alignment problem.  Furthermore, stereo systems rely on camera measurements and come with all the attendant problems of camera calibration.  Overcoming all of these challenges is necessary for the application of stereo vision techniques to the mapping and localization problem.
Our approach is designed to work with a range of stereo vision systems.  It involves 1) aggressive outlier rejection applying adaptive thresholds to several error metrics; 2) local registration by the point-to-plane variant of the iterative closest point algorithm, modified to include constraints based on odometry estimates; and 3) global registration to optimally distribute cyclic discrepancies over all the local motion estimates.  
We illustrate the capabilities of  our algorithm with an example based on an active space-time stereopsis system.  A room full of randomly placed objects was surveyed by a mobile robot following a rounded rectangular path.  Two hundred and thirty depth fields were recorded, each containing about 25,000 vertices.  Local alignment was performed only between consecutive frames and global registration was performed once, upon completion of the loop.  The resulting dataset was down-sampled and displayed using the algorithms of Mark Pauly [10], yielding the model shown in Figure 1.
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Figure 1. The perimeter of a room cluttered with random objects.  Composite of 240 depth-fields, locally and globally registered, down-sampled into point clusters.

2 Approach

In this section, a detailed description of the methods used to generate our current results is presented with comments as to why the important decisions were made.
2.1 Outlier Rejection

Stereo algorithms are particularly prone to noise so strong outlier rejection is critical to local registration.  Considering only a single mesh, our approach is to characterize each vertex by two measures.  The first is the maximum edge length attached to it and the second is the maximum angle between the normal of the vertex in question and the normals of its neighbors.  A vertex is rejected as outliers if it is part of the intersection of the outliers within each category.  
In order to define an outlier we must consider what kind of distributions we expect for each of these parameters.  The maximum edge length parameter will be highly non-Gaussian with a positive skew and a heavy tail.  Figure 2 shows a likely distribution for this parameter.  In such a distribution the median, as computed by random sampling, is a computationally inexpensive approximation of the mode.  An effective threshold for outlier rejection in this type of distribution is twice the mode.  
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Figure 2. A model for the maximum 
edge length parameter.
The maximum angular difference between neighboring normals has a related distribution to that of the maximum edge length associated with each vertex.  Here, however, we expect the distribution to rise immediately from the origin, which leads to a larger outlier cut when using the same model as above.  This is acceptable because we classify outliers as the intersection, not the union, of the two sets of vertices that exceed the two thresholds.  Furthermore, we expect large differences in neighboring normals to be a particularly strong sign of noise and therefore filter aggressively with respect to it. 
2.2 Local Registration
Local registration between two meshes is a core component of the three-dimensional reconstruction algorithm.  The robot’s motion between any two measurements is predicted by this algorithm, which consists of several steps.  Broadly speaking we seek corresponding points in the two meshes and apply a transformation to minimize some error metric, which is a function of the point pairs.  After the transformation, we seek new correspondences and the process is repeated, either for a fixed number of iterations or until the cumulative transformation stops changing with each iteration.  In the present implementation, points are sampled uniformly from one mesh and an octal-tree search is used to find approximate matching points in the other mesh.  A variant of ICP called point-to-plane is used to find the optimal transformation between the two.  In this formulation, the error metric, modified to include odometry constraints is defined by
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Here, pi and qi are points in the two meshes under consideration; ni is the normal corresponding to pi; R is a linearized rotation matrix, parameterized by pitch angle α, yaw angle β, and roll angle γ; T is a translation vector; wi is the weight associated with a given pair; b is the six-dimensional state vector, of which the first three elements are the rotation parameters and the second three elements are the translation parameters; and 
[image: image4.wmf]ˆ

b

 is the estimated state vector inferred from the odometry.  Differentiating this expression with respect to each of the state vector parameters leads to a system of six linear equations in six unknowns.  Solving this linear system leads to an optimal set of transformation parameters.

The index i in the error metric summation is the sum over all sampled point pairs that have not been rejected as too far apart.  Here the rejection method used to reject bad pairings is the same as that used to reject outliers in each mesh.  Pairs that contain vertices that are on the edge of a mesh or are adjacent to points that have been rejected otherwise are also rejected.  The weights wi are selected such that points with greater uncertainty are given less weight.  We expect noise to increase with distance so a negative linear weight is used, scaled from unity at the origin to zero at the maximum effective depth of field of the system.

It is also possible to weight point pairs based on the signal-to-noise ratio of the original measurement, or to include color or normal information in the matching process.  Such inclusions, when possible, typically improve the accuracy and convergence characteristics of the ICP algorithm.  The most important point, however, is aggressive outlier rejection, the absence of which can lead to large estimation errors.
2.3 Global Registration
As the robot moves through a scene it will inevitably encounter regions that it has already crossed, such as when completing a loop of hallways or scanning the outer perimeter of a large room.  Here the robot is faced with a contradiction.  The chaining together of local motion estimates based on local scan alignment produces an estimate of the current position that is not the same as the direct estimates provided by comparing the current scan directly with the previous scans of the same region.  Resolving this discrepancy is the global registration problem, which is solved by distributing the discrepancy over all the local motion estimates optimally according to our measures of local alignment quality from each point-to-plane alignment.  The problem is illustrated schematically in Figure 3.  Here the pose vectors are denoted Pi and the relative transformations between the ith  pose vector and the (i+1)th pose vector is denoted bi.  

[image: image5]
Figure 3. A schematic illustration of the global registration problem.


We seek a solution that reconfigures the pose vectors to minimized the total error associated with the discrepancy between the chosen transformations and those predicted by ICP.  That is, the error due to a perturbation in any given relative transformation is given by
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where Ci is the ICP correlation matrix associated with alignment bi.  We write the perturbation away from the ICP alignment as a non-linear function of the associated poses
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which can be linearized using a Taylor series expansion
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Here, evaluation at zero indicates values computed by local alignment alone.  Thus we have a linear equation for the perturbation away from the ICP alignment that is caused by a given change in the associated pose vectors.  This equation can be inserted into our expression for the related error contribution, yielding terms of the form
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and the whole quadratic system can be optimized by solving the linear system
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The resulting system is of size 
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, where n is the number of poses in the cycle and dof is the number of degrees of freedom allowed to each transformation.
3 Results

The results of the present work are several.  First we have created a globally consistent three-dimensional reconstruction of a scene using an active space-time stereo system.  Second, we have evaluated the effects of our outlier rejection scheme by running the code with and without the various filters.  And third, we have validated the accuracy of our statistical models for the outlier rejection metrics.

The dataset used in to generate these results was produced by Honda Research Institute in Mountain View, CA.  The work was carried out by James Davis and details regarding the scanner can be found in [12].

3.1 Three-dimensional Reconstruction


The primary result of the present work is the successful use of a active stereopsis system for mapping and localization.  A mobile robot was commanded to move in a rectangular path with rounded corners around the perimeter of a room.  A sequence of 230 depth fields were recorded and processed according to the algorithm presented above.  The resulting model was then reduced using point clustering techniques and is shown in Figure 1.

The data is rich with detail.  The snapshots in Figure 4 show small portions of the complete model.  The visible structure in the left hand image is the base of a white board.  While triangles have been mapped to these vertices for each mesh, the relatively high level of noise remaining in the model makes surface rendering a poor mode of visualization.  This highlights the need for the sort of data reduction used to generate the model shown in Figure 1. 
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Figure 4. Two snapshots from the combined dataset.

3.2 Algorithm Evaluation


The second result is the assessment of the importance of the various components of the algorithm.  In order to assess how critical each code feature is to the final result, the algorithm was run with several different combinations of filters and with and without odometry constraints.  The features examined were the edge-length and normal-similarity filters.  All four binary combinations were considered.  The resulting estimated robot paths are shown in Figures 5 and 6.  In all cases the original path is shown with in blue with x markers and the globally-registered path is shown in red with dot markers.  It is clear from these plots that both forms of filtering are critical to accurate path prediction and that the negative impact of not including such filters is made much larger if reasonably accurate odometry estimates are not available.


It should be noted here that the range data used in this analysis was poorly calibrated, leading to systematic errors such as the lack of loop closure in almost every non-globally registered case.  The calibration problem also certainly has a large impact on the performance of the algorithm without odometry constraints, explaining in large part the strange paths predicted in Figure 6.  Indeed, it is impossible to get good local registration from poorly calibrated data using ICP alone since the true global minimum in the error field will be incorrect compared to the actual path.  
[image: image18.emf][image: image19.emf]
[image: image20.emf][image: image21.emf]
Figure 5. Robot path estimates including odometry estimates, before ( blue with x markers) and after (red with dot markers) global registration.  Using, from top to bottom and left to right, (1) both edge-length filtering and normal-similarity filtering, (2) only normal-similarity filtering, (3) only edge-length filtering, and (4) neither form of filtering.
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Figure 6. Robot path estimates ignoring odometry estimates, before ( blue with x markers) and after (red with dot markers) global registration.  Using, from top to bottom and left to right, (1) both edge-length filtering and normal-similarity filtering, (2) only normal-similarity filtering, (3) only edge-length filtering, and (4) neither form of filtering.

3.1 Statistical Model Validation

In Section 2.1 our approach for filtering outliers was described.  Part of the approach was an assumed model for the distribution of our two error metrics.  We validated the accuracy of our model by plotting the actual distributions we observed.  Figure 7 shows the edge length distributions for a random sampling of the frames in our dataset, before and after renormalization with respect to the threshold.  The analogous results are shown in Figure 8 for the distribution of maximum angle between neighboring normals.  In both cases approximating the mode with the median was an effective way of making computationally efficient dynamic cuts.  Indeed, it is worth noting that improving our mode estimate using Pearson’s mode approximation actually worsened the quality of the cut by widening the width of the tail.
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Figure 7. From left to right, histogram of the maximum edge length, and the same data renormalized with respect to the threshold selected as twice the approximate mode.
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Figure 8. From left to right, histogram of the maximum angle between normals, and the same data renormalized with respect to the threshold selected as twice the approximate mode.

4 Related Work
A large volume of work has been done with time-of-flight laser systems and for a comprehensive overview of this work the reader is referred to a survey paper on the topic by Thrun [11].  There has been some recent work with visual sensing by matching features like vertical and horizontal lines, corners in the scene, and active stereo vision to find salient features. However vision is more processor intensive, more noisy, and  stable visual features are more difficult to extract. 

Davidson and Murray [1] used active vision for real-time, sequential map-building within a SLAM framework. Assuming that the robot trajectory was given or provided by some other goal-driven process, they controlled the active head's movement and sensing on a short-term tactical basis, making a choice between a selection of currently visible features. Persistent features re-detected after lengthy neglect could be re-matched, even if the area was passed through along a different trajectory or in a different direction. 

Scale Invariant Feature Transform (SIFT) features developed by Lowe [5] are invariant to image translation, scaling, rotation, and partially invariant to illumination changes and affine or 3D projection. Se at. al. [7] employ the SIFT scale and orientation constraints for matching the stereo images. After matching they used a least-squares procedure to compute the camera ego-motion for better localization. Their features had a viewpoint variation limit of 20 degrees.

Wolf et. al. [9] built a vision based localization system by combining techniques from image retrieval with Monte-Carlo localization. The system is able to retrieve similar images even if only a small part of the corresponding scene is seen in the current image. These results are filtered by visibility constraints to globally estimate the position of the robot and to reliably keep track of it and to recover from localization failures.

A stereo vision algorithm for mobile robot mapping and navigation is proposed by Murray et. al. in [6], where a 2D occupancy grid map was built from the stereo data.  However, odometry error was not corrected and hence the map could drift over time.

Little et. al. [4] proposed combining this 2D occupancy map with sparse 3D landmarks for robot localization. They used corners on planar objects as stable landmarks. A trinocular system was used to compute neighborhood region planarity. However, landmarks were used for matching only in pair of frames but not kept for matching subsequent frames. 

Among approaches combining vision and laser sensors, Dellaert et. al. [2] compared brightness values between the images obtained by the robot to those given a visual map of the ceiling obtained by mosaicing.  They used particle filters to represent the multimodal robot belief. The Minerva museum tour-guide robot [8] learnt its map using this technique in addition to the laser scan occupancy map. 

Among approaches using laser range data, Gutmann and Konlolige [3] use global registration and correlation techniques, to reconstruct consistent global maps. 

5 Conclusions

The development of fast and reliable algorithms for robotic mapping and localization is critical to the advancement of the broader field.  There has been much work over the past two decades using direct range sensors such as laser scanners, but these systems remain fundamentally unsatisfactory.  Recent work on active stereopsis has led to new stereo systems that are capable of consistently producing dense range fields in certain environments.  These new systems present a great opportunity for expanding the capabilities of the current mapping and localization algorithms but there are several obstacles that must be overcome before this will become a reality.  Broadly speaking the problem is noise.  Compared to laser scanners there are a larger number of outliers and the noise in the measurements increases with distance, making localization more difficult.  These differences require modifications to the conventional algorithms for mapping and localization.

We have presented an algorithm designed to work with camera-based range finders that solves some of these problems.  We have combined aggressive filtering with a robust local alignment algorithm and a global registration algorithm that is capable of resolving inconsistencies in the model when they are discovered.  The algorithm was presented in general terms and its efficacy was demonstrated with an application to the range measurements of an active space-time stereo system developed at Honda Research Institute. 
During data processing it became clear that the stereo system was not calibrated correctly.  It is notable then, that it is even possible to infer a reasonable approximation to the true path when the scans don’t agree with each other or with the independent odometry estimate.  In the end the best model was produced when a compromise was made between the local alignment and the odometry estimates.

A second result of the work was an analysis of which types of filtration are most critical in this sort of application.  The algorithm was run with various features deactivated and the resulting path estimate is compared to the reference path, as computed with all the features activated.  The reference path itself was found to agree well with the observed path, as reported by the experimenters. 

Clearly, much more work is required on this topic.  The present work ignores entirely the question of identifying cycles when they occur.  In this work the cycles were identified by the operator while any true application of this technology would require autonomous identification of cycles.  One possible method is to compare the current pose to all of the previous robot poses and to attempt local registration with any poses that have fields of view that intersect with the field of view of the current pose.  Under some reasonable assumptions this would be a computationally efficient method for identifying cycles.  There is also a great deal of work to be done in data reduction and model representation.  Current methods, such as expectation maximization and point clustering do not take advantage of the global structure inherent in buildings and tend to produce less than perfect models.  Recent work in tree-based multi-scale data reduction techniques seems to hold promise for taking advantage of global structure in a computationally efficient framework.  The implementation of these techniques to this problem promises to improve the quality of models that robots generate buildings.
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