Autonomous Learning of a Spatial Model and Object Recognition with a Pan-Tilt-Zoom Camera

Project Final Report

By

Paul Briant

Gary Chern

Jared Starman

CS223B

Dr. Thrun and Dr. Bradski

March 12, 2004

Abstract

The following presents a method for modeling a wide area scene that is observed by a pan-tilt-zoom camera, and for detecting new objects in the scene. The scene is modeled both by SIFT features, as well as color information from a panoramic image of the entire field of view. The panoramic image is stitched together using SIFT features, and new objects are detected by both a feature based detection and color background subtraction. The feature based detection is based on the appearance and occlusion of SIFT features, while the color based detection is done by comparing histograms of hue values. The use of these two methods in combination is a unique solution that is in general more robust than existing methods. The SIFT features have shown to provide a good basis for stitching the panoramic background image, and the object detection usually produces satisfactory results.
Autonomous Learning of a Spatial Map and Object Recognition with a

Pan-Tilt-Zoom Camera

1.0 Introduction

Current surveillance systems require human monitoring, which is time consuming, expensive, and prone to error. Efficient and accurate computer object recognition and tracking algorithms would help overcome this problem and would greatly enhance the security industry. Before object recognition can occur, however, objects must first be detected as foreground. Object detection requires a system to learn a model of its background, so that foreground objects can be detected through simple comparisons between new images taken by the camera and the background model. For static surveillance cameras, learning the background model and object detection are usually straight-forward, however, surveillance systems often employ pan-tilt-zoom (PTZ) cameras, which make these tasks more difficult. The underlying new problem for PTZ cameras is that the camera can only see a portion of its total field of view at any instant in time. Therefore, in order to build a usable background model, the system must stitch together different pieces of its background accurately. In addition, when a new image is taken for detection, the system must correctly position the image before it can be compared to the background model.

Although there has been much work in both panoramic image construction, and in object detection, there are currently few algorithms that combine these two areas for object detection over a wide field of view. In addition, the few algorithms that do exist are based primarily on pixel color information [5, 6]. Our approach differs from these previous algorithms because we use not only the pixel color information, but also Scale Invariant Feature Transform (SIFT) features. Using these SIFT features as well as the color information provides a more robust solution to this problem.

Our approach uses the SIFT features both for building the background model and during object detection. While building the background model, they are used to develop an initial set of corresponding points between a new image and the current background [1, 8]. The initial set of corresponding points is obtained by performing a nearest neighbor search in feature vector space. These corresponding points can then be used to calculate an affine transform between the image and the current background. SIFT features provide a good basis for the affine transform because they are well localized and fairly unique. Once this affine transform is known, the image and its features can be merged with the current background.

After an initial background model is established, object detection can begin. The SIFT features are again used to determine an affine transform between a new image and the background, in order to correctly position the new image in the background. After the image is correctly positioned, the algorithm does both a feature based and a color based object detection. Only those regions that appear as foreground in both detection algorithms are considered candidate foreground. Masking the color detection in this manner helps to reduce the noise. After the foreground is detected, the new image is incorporated into the background in order to update the background. This allows for a background model that adjusts automatically to long term changes in the scene.

The algorithm for building a background model and stitching together images shows good results. The camera is currently in the Robotics Laboratory in the Gates building, and it can build up a good panoramic image of the laboratory. The stitching algorithm typically has better results in areas with high texture, although, results were still adequate in areas with limited texture. The object detection algorithm usually produces satisfactory results; however this is not always the case.

2.0 Related Work

Object detection over a wide field of view draws upon two fields: creating panoramic images and object detection.

2.1 Creating Panoramas

There are two basic methods of constructing panoramas: direct methods and feature based methods. Direct methods attempt to iteratively minimize an error function over the area of overlap of two images [1]. Feature based methods involve finding corresponding points between images, calculating an affine transform between the points, and using the affine transform to project points from one image to the other. There are different methods of finding corresponding points; they usually involve finding features that match between images. Our method was very similar to the method by Brown and Lowe [1], who uses SIFT features to establish the corresponding points. SIFT features are well suited for this task because they are characterized by 128 long feature vector, which makes each feature fairly unique. This uniqueness allows corresponding features to be determined through a nearest neighbor search over feature vector space.

2.2 Object Detection

The method most widely used for detecting moving objects is background subtraction, which works by subtracting the intensities or color of a background image from the current video frame. If the camera is fixed and always focused on the same scene, the simplest background model is an image of the scene with no new objects in it (stationary background). However, due to changes in illumination and changes in the background scene (i.e. transient background, such as swaying tree branches), the background image is often a model that needs to be updated as frames are gathered from the video stream. Problems facing maintaining the background model include moved background objects, gradual or sudden changes in illumination, vacillating backgrounds like swaying trees, camouflaged new objects that are the same color as the background, and shadows. More potential problems are identified in [2]. Other background subtraction algorithms use statistical information from previous frames to model the background. The color or intensity at each pixel in the image can be modeled by a single Gaussian or a mixture of Gaussians. These approaches allow for variation in the scene due to noise. A table of different background subtraction approaches is summarized in [3].

As stated earlier, color based background models are susceptible to changes in illumination because the color of the object appears different depending on the illumination level. This can be partially alleviated by working in HSV space, where hue represents color. Javed et al showed that the combination of color information with image gradients (which are less sensitive to illumination changes) allowed near illumination invariant background subtraction [4].

2.3 Object Detection over a Wide Field of View

Although there has been extensive work in constructing panoramas and also in object detection, there are few algorithms that combine these two areas. One algorithm that has addressed this issue was developed by Mittal and Huttenlocher in 2000 [5]. They use a KLT feature tracker to establish corresponding features, and use an affine transform to map images. They model the background as a mixture of Gaussians over the pixel color information. The Gaussian models are weighted differently depending on detected lighting changes or registration errors. Detection of foreground objects is based on the color information in the neighborhood of each pixel.

Lin et al also developed an algorithm for detection over a wide field of view [6]. Their approach was entirely color based. They created their panoramas by a direct method. Each pixel was represented by a mean and standard deviation of the luminance and chrominance values. If a pixel in the current image frame fell within a certain number of standard deviations of the mean of the corresponding background pixel, it was classified as background. Otherwise, it was foreground. The segmented background from the current image was used to update the values in the background model.

3.0 Approach

Our approach is similar to that of Mittal and Huttenlocher, in that it uses both features and color information. However, our approach differs because we use SIFT features, and we use the features both in constructing the panorama and in the object detection.
3.1 Description of the Background Model

We will begin the discussion of our approach by describing how we are modeling the background. Since we are using both the SIFT features and the color information for object detection, our background model consists of a database of SIFT features, as well as color histogram information of a panoramic image of the camera’s entire field of view. The SIFT features are modified versions of the SIFT features described by Lowe [8, 9]. Lowe characterizes each SIFT feature with a row and column position, scale, orientation, and a 128 long feature vector that represents a histogram of the gradient values in the neighborhood of the feature. In our model, in addition to these characteristics, we also record the standard deviations of all of the previously listed terms, along with an approximate pan and tilt position of the feature. Furthermore, we build up a database of color information by constructing histograms of hue values over every 5x5 neighborhood in a blurred and subsampled image of the entire background map. We used these simple models since our background is indoors, and we didn’t have to worry about swaying branches or other continuously moving background objects, such as trees. The model is, however, susceptible to lighting changes and changes in the background scene (i.e. chairs moving).

3.2 Phase 1: Learning an Initial Background Model

Our algorithm begins by having the camera sweep through its entire field of view, in increments of 5º, so that it can learn an initial background model. Five degrees was chosen because it yielded good panoramic images, while not being so small that the time required to build the initial model would be unreasonable. At each pan and tilt the camera takes an image and incorporates into the current background. Our process for adding the new image to the model is similar to the method described in [1]. We begin by extracting the SIFT features from the image using source code provided by David Lowe. We then calculate an initial set of corresponding features, which are determined using a nearest neighbor approach in feature vector space. These feature vectors are fairly unique, which enables us to use this simple nearest neighbor approach to develop a good initial set of correspondences [1, 8]. After this initial set of corresponding features has been determined, the images are stitched together using an affine transformation. The basic affine transformation equation is shown below.

[image: image1.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

=

1

0

0

,

23

22

21

13

12

11

1

2

a

a

a

a

a

a

A

u

A

u

r

r

The u vectors are the pixel locations of corresponding features in each image. In order to overcome image noise we chose to use 60 correspondences each time we calculate the affine transform. In addition, the nearest neighbor approach in feature vector space will often produce some outliers, and also some of the features may move because the objects they are associated with are moving. To overcome these problems we use a RANdom SAmple Consensus (RANSAC) algorithm to determine the affine transformation, which calculates many affine transforms based on a percentage of the correspondences. The affine transform with the smallest residual is retained. Once the affine transform is known, it is used to determine a more accurate set of corresponding SIFT features, and to stitch the images together. It is necessary to re-determine the correspondences because of the possible outliers that are present in the initial set. During this phase of the algorithm, we determine the corresponding features between the two images by finding the closest feature in feature vector space below a threshold and within a limited spatial area. At each pan and tilt this process is repeated, until the camera has swept through its field of view and an initial background model has been realized.

3.3 Phase 2: Object Detection and Maintaining the Model

Once the initial background model has been established, the object detection phase can begin. During this phase new images are captured from the camera, and compared with the background model. The first step in this process is correctly mapping the new image into the background model. This is done by again calculating an affine transform between the new image and the background. The affine transform is calculated in the same manner as during the initial model building.

Once the affine transform is calculated, both the image itself and SIFT features in the new image can be mapped into the background model and compared. The algorithm then performs a feature based detection by determining the corresponding features in the new image and the background model. During this phase of the algorithm, the correspondence is calculated in one of two ways. If a feature in the background model has been observed more than 10 times, we base the correspondence criteria on the statistics of that background feature; the feature in the new image must have all its characteristics except pan and tilt position within three standard deviations of the feature in the background model. If a feature in the background model has been seen less than 10 times, then we use the same correspondence criteria as described in section 3.2. Both of these correspondence criteria allow for some variability in the feature, which accounts for noise or the feature changing slightly. After we have determined all of the corresponding features, we can easily determine the new features (those features that are in the new image that are not in the background model), as well as the occluded features (those features in the background model that should be in the new image but are not present). It should be noted that since there can often be many unstable SIFT features, which are due noise or edges, we only perform the occlusion algorithm on those features that have been in the background model for a long period of time.

To complement the feature based detection, we perform a color based detection by comparing histograms of hue in the neighborhood of each pixel. We create a color difference image by computing the histogram intersection between the (normalized) histograms of the background model and histograms calculated for the image that we’re detecting over. We then threshold this difference image to create a color mask, and combine this mask with the mask from the feature based detection to determine a final candidate foreground. Doing this eliminates noise that would otherwise have appeared in the foreground images. Finally we do some post-processing on the foreground image to further reduce noise.

In addition to object detection, these new images are used to continuously update the background model. The new features in the image are added to the model, while features that have not been present for a while are removed. This allows for objects that move in and out of the scene quickly to be considered foreground, while new objects that come into the scene and remain stationary will automatically be slowly blended into the background.

3.4 Low Texture Areas

In order for this algorithm to work well, it requires surroundings that have at least some texture. For areas that do not have much texture, there are not many SIFT features, and so it is difficult to calculate an accurate affine transform. While building the initial background model we overcome this problem by using an approximate affine transform. We do this by establishing two constant affine transforms, one of which represents a change in pan of 5º, while the other represents a change in tilt of 5º. Whenever an accurate affine transform can be calculated we can calculate an approximate affine transform by multiplying the appropriate constant affine transform by the affine transform from the previous image. This gives us an estimate of what the affine transform should be. During the detection phase we do not have a previous affine transform, and so we must base our correspondence off of the pan and tilt that the image is taken at. The pan and tilt positions of each feature are only approximate, so this is a much less accurate method than the affine transform.

4.0 Results

The following describes the results from our background model building algorithm and our object detection algorithm.

4.1 SIFT Feature Stability

SIFT features are invariant to image translation, rotation, scaling, and partially invariant to changes in lighting or 3D camera viewpoint [8, 9]. Thus SIFT features should be invariant to pan, tilt, and zoom. Our results showed that SIFT features found at larger scales were stable under changes in pan, tilt, and zoom, while those found at lower scales were not.

[image: image2.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

=

1

0

0

,

23

22

21

13

12

11

1

2

a

a

a

a

a

a

A

u

A

u

r

r

[image: image3.png]

Figure 1: Two pictures taken one right after the other at the same location. Looking at the scale and orientation and the location of the features, the images appear to have many of the same features.

The above figure shows consecutive images taken from the exact same camera location seconds after each other. It seems to shows that most of the features found in the left image are also found in the right image, but when Lowe’s feature matching function is called, only 177 of the 412 features in the first image are matched. When spatial information from the affine transform is added, 37 more matches are found, giving 214 total matches. That still leaves almost 200 features that changed or disappeared in-between the two images. The arrows in the picture only show orientation and scale, but don’t tell any information about the feature vector. The feature vector is also the only information about the feature that is used to determine correspondence. So while the features may be in the same place and have the same scale, their feature vectors may be different enough that the features can’t be matched together.

From these initial analyses it appears that SIFT features are unstable, but further analysis shows that it’s mainly the low scale features that are unstable. For SIFT features with a scale greater than five (a medium sized SIFT feature in the image), 29 of the 32 keys in the first image were matched in the second image. For features of scale greater than two, 70 of 95 keys in the first image were matched, leaving only 107 matches of the remaining 317 features with scale less than two. Thus SIFT features are stable at higher scales, but unstable at lower scales. The lower scale features are more susceptible to changes in lighting and camera noise, and are often on edges. In addition, most of the lower scale features probably describe background clutter or ambiguous objects, making them difficult to match. These unstable features generally do not remain long in the feature database because they are not matched as the camera passes over them and are therefore weeded out.

[image: image4.png]f/f{

PN 2

b QX‘
B ‘,V%‘H\E,l/ﬂ
J
] B
\3&’-—’ ‘” %ﬁ%ﬂﬁw :
(/Mls(/\’ A ’«F}'Jg i =

S

We found similar stability results for pan and tilt changes. The above figure shows two images taken at the same tilt and zoom but slightly different pans. In the overlap between the two images, 218 features were found in the first image and 254 features in the second image, while only 101 features were matched. At scale greater than three, 31 of 46 features were matched, but only 70 of 172 features with scale less than three were matched.

SIFT features seem to be less stable for changes in zoom. An image of the room was taken and 335 features were found, then another image of the same spot at four times the zoom was taken and 271 features were found. Correspondence was run on the two images and only 80 features were matched; when spatial information was added, 110 features were matched. Even at higher scales (greater than three), only 40% of the features found in the 4x zoom image were found in the 1x zoom image, even though all of the objects in the higher zoom image were also in the lower zoom image. The instability at varying zooms could be due to the fact that objects come in and out of focus as the zoom changes, changing the feature vectors.

Our PTZ camera and complicated background showed that high scale SIFT features were stable across pan, tilt, and zoom. At low scales, however, SIFT features were unstable because they were susceptible to lighting, camera noise, and getting lost in background clutter or ambiguous objects.

4.1 Determining the Corresponding Features and Calculating the Affine Transform

In order to calculate an affine transform between two images, an initial list of corresponding points is required. As stated earlier, we use SIFT features to determine these points. To match the SIFT features we use a nearest neighbor matching algorithm, as described by Lowe [8]. Although this algorithm typically yields good results, it can sometimes produce outliers that are drastically incorrect, as shown in Figure 3 (a).

[image: image5.png]

It is for this reason that we use the RANSAC algorithm while calculating the affine transform and why we also recalculate the corresponding features after the affine transform has been determined. A set of initial correspondences such as this one would typically produce an average residual of 1 pixel, and yield a final set of correspondences as shown in Figure 3 (b). The new set is considerably larger than the set found in (a), and there are no large spatial outliers.

For areas of the room that have much less texture, then the feature vector matching yields bad results, as shown in Figure 4 below.

[image: image6.jpg]

[image: image7.png]

Initial correspondences such as these will obviously produce a bad affine transform. It is during these situations that we estimate the affine transform or use the pan and tilt information.

4.2 Constructing Panoramas

Figure 5 shows an early result from our image stitching. The overall placement of each picture lines up roughly well, but is not exact. Furthermore, image boundaries are extremely noticeable and the map is only in black and white. In addition, it should be noted that only half of the room is shown. At the time, we were unable to include the other half because of the lack of texture.

[image: image8.jpg]

Once we began to use an approximate affine transform in feature sparse areas, we were able to stitch together the entire room, as shown in Figure 6.

[image: image9.jpg]

Figure 6 also shows improvements that we made in visualization of the images, such as performing our image stitching on color images and better aligning the individual images.

4.3 Object Detection

Figure 7 shows an image that we acquired after building the scene map seen in Figure 6. Clearly, a new object (one of the authors) has been placed in the scene. However, the right image in Figure 7 shows what our model believes to be new SIFT features for the newly acquired image. Many new features show up on the head and around the author’s body. However, many new features are also detected throughout the scene on objects that would definitely not be considered new. Furthermore, the “spurious” SIFT features can be extremely clumped, which would fool object detection algorithms into believing that a new object existed.

[image: image10.jpg]ORY

°S LABOR #
ROB01'CS LABORAT

The first step in our object detection scheme is to acquire a new image, as done in Figure 8 (a). In a similar fashion to how we constructed the scene map, an affine transform is calculated between the scene map and the newly acquired image. Then, using our model for SIFT features we are able to overlay or stitch the new image onto our spatial map. At the same time, we use our more sophisticated correspondence algorithm to determine which features in the newly acquired image are new, and which features in the background map are occluded.

[image: image11.jpg]

Based on the new and occluded SIFT features, we can create a SIFT feature mask as seen in Figure 9 (b). The SIFT feature mask is create by placing rectangles at each feature location, sized according to the scale the feature exists at. Then, morphologically process the images by open and closing them to produce the mask as seen.

To help combat the problem of basing our decisions about new objects solely on SIFT features, we decided to take into account color information. First, we subsample and blur our spatial map, and convert it to HSV space. Second, once a map has been built, we build up a histogram of hue values for each of the subsampled and blurred pixels over a local neighborhood and store that information to disk for future use. When a new image is taken and the affine transform calculated, we can do a color subtraction by comparing the hue histograms saved to disk with the new hue values that we calculate over the new image. An example color difference image is seen in Figure 9(a).

The color difference image is thresholded and processed, and then combined with the mask created from new and occluded SIFT features, as seen in Figure 9(b). Figure 9(c) shows that the author is correctly extracted from the image, although in several pieces.
[image: image12.jpg]

[image: image13.jpg]

[image: image14.jpg]

[image: image15.jpg]

Our object detection algorithm can work very well under some circumstances, but breaks down under other cases. If the background map has recently been updated, as in cases (b), (c), and (d) in Figure 10, most new objects are at least partially detected with a few false positives. However, if the lighting conditions change suddenly, and this is not represented at all in our background model, then the entire scene will be labeled as new because the color subtraction part of object detection broke down. Furthermore, certain objects that are new, such as the subject wearing the yellow-orange shirt in case (b), mysteriously blend into the background.
[image: image16.jpg]

5.0 Future Work

Real Time Detection

Currently, the detection part of our software does not perform in real time. Further steps could be made to shorten the time between image acquisition and the decision and display of new objects.

A new data structure to store the saved SIFT features should be designed. Currently, all features are stored inside a large linked list in main memory. A tree (perhaps a k-d tree) or some sort of hash table could greatly speed up the time it takes to determine which features in our database we should be considering for correspondences and occlusions.

Unfortunately, one of the limiting factors in real time operation is Lowe’s SIFT feature extraction code itself. To run a normal image it takes several seconds to extract the features alone. We could limit the number of scales to use in the image pyramid, but that means less features are found, and that presents its own problems in feature sparse areas.

Color Subtraction

Right now we only take into consideration the hue values of the pixels, but we should also take into account saturation values. Or, perhaps we could look at luminance and chrominance like Lin et al [6].

Zoom

We focused most of our work on dealing with pan and tilt, and only spent a little time on zoom. Our current idea for dealing with zoom is to build up spatial maps at several different zooms and reference them accordingly. That scheme could be implemented, or perhaps one that still uses only a single spatial map could be used.

Tracking and Classification

And finally, the eventual goal of work like this would be to track moving objects across several frames and try to classify the object. The practical success of this part is highly dependent on the getting the detection to run in real-time though.

6.0 Conclusion

The main objectives of this project were to develop an algorithm for building a background model and performing object detection with a PTZ camera. There are currently very few algorithms that address this issue. The underlying problem that must be solved is how to deal with the fact that the camera sees only a portion of its field of view at any instant in time. Our approach to solving this problem is unique in that it uses SIFT features both in constructing the background model and in object detection. These SIFT features add robustness to the solution, because they can be used to reduce the noise that is often encountered in color based detection. Our approach yields good results for constructing the background model and creating the panoramic image. The object detection results are usually satisfactory, however they are sometimes wrong. Accurate and efficient solutions to the problem could apply across a range of fields including security surveillance and robotics.

7.0 References

[1]
M. Brown and D. Lowe, “Recognising Panoramas.” Tenth International Conference on Computer Vision (ICCV 2003), pp. 1218-25, Oct 2003.

[2]
K. Toyama, B. Brumitt, J. Krumm, and B. Meyers, “Wallflower: Principles and Practice of Background Maintenance.” Proceedings of International Conference on Computer Vision, 1999.

[3]
R. Cucchiara, M. Piccardi, and A. Prati, “Detecting Moving Objects, Ghosts, and Shadows in Video Streams.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1337-1342, Oct 2003.

[4]
O. Javed, K. Shafique, and M. Shah, “A Hierarchical Approach to Robust Background Subtraction using Color and Gradient Information,” Proceedings of the Workshop on Motion and Video Computing, pp. 22-27, Dec 2002.
[5]
A. Mittal and D. Huttenlocher, “Scene Modeling for Wide Area Surveillance and Image Synthesis,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 160-167, June 2000.

[6]
C.-W. Lin, C.-M. Wang, Y.-J. Chang, and Y.-C. Chen, “Realtime Object Extraction and Tracking With an Active Camera Using Image Mosaics,” IEEE Workshop on Multimedia Signal Processing, pp. 149-152, Dec 2002.

[7]
Forsyth, D., Ponce, J. Computer Vision: A Modern Approach. Pearson Education Inc., 2003.

[8]
Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004.

[9]
Lowe, D. Object Recognition from Local Scale-Invariant Features. ICCV, 1999.

d

c

b

a

Figure 10: The above pictures and text summarize some typical results from our object detection algorithm

Lower object is a new person in a chair. Middle object is computer screen turned on, and top object is a different lighting condition through door.

Figure 5: An early attempt to stitch together a scene map of Robotics Laboratory. Note the strong presence of visible “patches.” Also, note that we weren’t able to stitch together “feature-sparse” areas.

Figure 3: (a) Shows the correspondences found from Lowe’s matching algorithm. (b) Shows the correspondences found using our algorithm after using Lowe’s correspondences to create an affine transform. Note, there are many more correspondences found in (b) and there are no large outliers as in (a).

(a)

(b)

Figure 2: The camera pans left 5 degrees between the first and second images shown above. Highlighted in red is a large feature found in the first image but not in the second image.

Figure 4: The left image shows the corresponding features in a low texture are of the room. There are very few correspondences and of them are wrong. This yields bad affine transforms, and therefore bad stitching, as shown on the right.

Figure 6: Our latest panoramic of the Robotics Laboratory. Note that the image is now color, computer monitors on the left are no longer cutoff, and we are able to stitch in images from the “feature-sparse” area of the room on the right. Also note that image “patchiness” has been reduced slightly.

Figure 7: The image on the left is a new image acquired from the PTZ camera. The only “new” object in the scene is the person, yet many “new” SIFT features are detected all over the image (right). All these spurious “new” features were part of the motivation for including color information.

(a)

(c)

Figure 9: The color (hue) difference image (a) is combined with the SIFT feature mask (b) to produce a new mask that is used to detect a new object in our image. In this example, the subject, who was in the detected image in Figure 8 (a) is clearly identified as a new object (c), although, in several parts.

(b)

Change in lighting and white control balance throws off color subtraction. Entire scene detected as new.

4 new objects on left correctly detected, although not completely shown. 2 false positives on right.

� EMBED Equation.3 ���

3 new objects correctly detected in lower part of scene. 1 new object missed in top half of scene.

(c)

(b)

(a)

Figure 8: (a) is a single image taken from the PTZ camera. (b) is the section of the scene map that corresponds to where (a) was taken. (c) shows (a) stitched into the scene map.

+

[image: image17.jpg]

[image: image18.jpg]A
s

[image: image19.jpg]

[image: image20.jpg]

[image: image21.jpg]

[image: image22.jpg]

[image: image23.jpg]

[image: image24.jpg]

[image: image25.jpg]5%
i

oA

[image: image26.jpg]

[image: image27.jpg]

_1137829408.unknown

