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Abstract 
 
Media broadcasts often require personally-identifiable 
visual information to be obfuscated to preserve anonymity 
of witnesses, suspects, and minors. Currently, this process 
requires a manual post-processing step, incurring a 
significant delay that prevents content from being televised 
live. Using scale-invariant features and descriptors, we 
propose a unique clustering system that can automatically 
obscure an identified target object in subsequent video 
frames. The system maintains awareness of similar 
subjects, avoiding obfuscation of incorrect objects while 
tracking the target. 
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1. Introduction 
 
Live media broadcasts often require personally-identifiable 
visual information to be obfuscated to preserve anonymity 
(faces, license plates, addresses, etc.). This is especially 
true when video footage includes minors or witnesses. To 
do so for a stationary interview is simple. However, if 
motion relative to the camera is involved, a painstaking 
human post-processing step is currently required before 
broadcast: the subject must be manually censored.  This 
results in a significant delay and prevents many programs 
from live airing.  

In the live broadcast scenario, the primary objective is 
to enable a camera operator to rapidly locate and specify an 
object in the first frame, then automatically track and 
obfuscate it throughout the stream.  This scenario presents 
some unique conditions that differentiate it from other face 
and object recognition tasks: 

 
• No pre-training.  Data about the target object must 

be acquired immediately prior to broadcast in the 
first set of frames – it cannot be pre-acquired and 
trained from over a period of time.  Target objects 
are present at the start of broadcast, and can be 
specified by a camera-person using an integrated 
interface. 

• Scene transformation.  In live broadcast, the 
camera and object position and orientation are 
dynamic and unpredictable.  Tracking must be 
invariant to translation, rotation, scale and lighting 
changes.   

• Reacquisition.  When the target object is 
temporarily occluded, out-of-focus, rotated out-of-
view or out of the scene in subsequent frames, no 
obfuscation is required.  In all cases reacquisition 
must occur immediately and obfuscation resumed 
once the object re-enters the visible scene. 

• Differentiation.   Similar objects can enter and 
leave the scene throughout this process, yet the 
system should consistently track only the target 
object. 

• Temporal coherence.  While movement in the 
scene may be rapid, reasonable temporal 
coherence between object features can be 
assumed.  Data is recorded at 30 frames-per-
second, and it can be assumed that the camera 
operator will be professional and deliberate. 

• No 3D construction or location is required. The 
goal is the obfuscation of the element’s 
identifiable features in image-space. 

 
 

Although many solutions for object recognition and 
tracking have been developed, prior research has dealt with 
these problems in a different scope.  These applications 
deal either with recognition of objects from a machine-
learned database of templates (e.g. office locations or 
faces), or the tracking of a moving object without regard 
for global reacquisition under a wide variety of 
circumstances. In other words, these applications deal 
primarily with the fields of robotics [CHANG98], security, 
and human-computer interfaces [BRADSKI98] - not 
broadcast media. These problem spaces either incorporate 
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significant amounts of learning and library-building, or deal 
with the tracking problem locally as opposed to globally.  

The goal of this project is to create a proof-of-concept 
of an interface that will allow a camera-person to identify 
an element in view (such as an individual's face) and mark 
it for automatic obfuscation in the subsequent live video 
broadcast. The system will track the object automatically as 
it moves, concealing it via blurring or image overlay.   

The algorithm will combine traditional SIFT features 
([LOWE03]) with some novel modifications that track the 
specified object through a variety of scene transformations.  
A modification to the traditional Hough transform 
clustering method will allow objects which are similar to 
the target (i.e. other faces in the scene) to be simultaneously 
identified and tracked, preventing obfuscation of the wrong 
object if the primary target is occluded.   

Our results thus far illustrate the robustness of SIFT 
feature detection and Lowe feature descriptors. As a 
general rule, individual features remain detectable over 
reasonably wide affine transformations (often with 
rotations in excess of 40 degrees).  SIFT features have been 
found to be especially prominent within the objects in 
question (faces, license plates, etc.) 

Several factors have been confirmed or uncovered that 
have a significant effect on the SIFT algorithm’s ability to 
discriminate features. Independent of the magnitude of 
transformation, SIFT features have a tendency to be 
temporally erratic. This mandates a flexible clustering 
model that allows for recognition based on an incomplete 
set of features, some of which may be incorrectly 
correlated. 
 
 
2. Background 
 
The right and desire of the viewing public to see events 
broadcast in real-time must be balanced with an 
individual’s right to privacy.  This conflict is most 
pronounced in broadcasts of sensitive events involving 
legal culpability such as police actions and court 
proceedings.  Viewers demand live broadcast of these 
events, yet the privacy of suspects, victims and witnesses 
must be preserved.  It has been concluded that 
“Broadcasting the identity of a crime victim most often 
only adds to the person's grief, anguish and trauma” 
[CBC03], while broadcasting the identity of a suspect can 
jeopardize the fairness of criminal proceedings.  
Governments have sought reasonable compromise 
[TEXAS02], but the conflict remains, exacerbated by the 
fact that preservation of anonymity demands a broadcast 
delay of minutes to hours. 

 
Figure 1: Pixilated image of a 13-year-old murder 
suspect turning himself in to the police (the youth's face 
has been obscured because he is a juvenile) 
 

Preservation of privacy is not necessarily guaranteed 
by a system limited to facial occlusion. Additional scenes 
may require obfuscation of other personally-identifiable 
information (PII), such as license plates or addresses. By 
enabling a camera-operator to identify PII while filming, 
automatic object obfuscation could begin, allowing the 
output of such a system to be broadcast live. A courtroom 
scene could be broadcast live without the risk of privacy 
violation if the camera or protected subject moved. 

Existing solutions deal separately with variations of 
two basic problems: Tracking and Object Recognition. 
Tracking is traditionally performed using gradient descent 
techniques to compute optical flow, such as those presented 
by Lukas and Kanade. These methods are fast and provide 
an excellent solution to the local tracking problem. These 
methods fail, however, when objects rotate beyond a 
threshold or temporarily leave the local scene-space. In the 
case of target loss, [CHANG98] stops camera motion and 
performs a continual search for the object based on its most 
recent visual template. This works well if a stationary 
object is temporarily occluded by an intermediate object, 
but fails if the camera or object has changed orientation 
when the object returns to the view. 

Object recognition is traditionally dealt with as a 
separate problem. Many methods exist for the recognition 
of objects, ranging from broad 3D object recognition to 
specific applications for human faces, etc.  Several 
approaches to facial recognition use statistical methods to 
train on specific faces.  [SCHNEID00] requires training on 
images of each facial orientation.  [WISKOTT97] describes 
a method using Elastic Bunch Graphs that does not require 
per-face training but is not illumination invariant.  In these 
cases, either the algorithm is designed to detect a generic 
object type, requires an extensive database of pre-acquired 
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data, or does not enjoy the transformation invariance of 
SIFT features. 

Once features are recognized, many robust fitting 
methods are available to cluster them into objects. 
Techniques such as RANSAC or Least Median of Squares 
are potential candidates, but have been found to perform 
poorly when the ratio of cluster inliers to outliners falls 
below 0.5.  The Hough transform cluster method described 
in [LOWE03] was shown to provide better performance in 
this case. 

Pre-and post-processing methods also exist to improve 
recognition accuracy.  Algorithms exist to increase lighting 
independence, such as [ROSS00] which is based on the 
biological model of human vision.  

Methods exist to compensate for the effects of motion 
blur on motion estimation. The method described in 
[TIMONER01] uses intrinsic properties of a video camera 
to anticipate the impact of motion blur on optical flow and 
compensate accordingly. Unfortunately, these methods 
clarify optical flow but do not improve the quality of the 
original image, yielding no benefits for feature detection. 
Generalized blurring can be remedied using a sharpening 
filter. Motion blur effects can traditionally be compensated 
for only by more expensive camera hardware with a faster 
simulated shutter speed. 

SIFT features can maintain prominence over a wide 
range of transformations and lighting conditions, and their 
gradient-based descriptors have shown to be highly 
discriminatory over other methods [Mikolajczyk03].  SIFT 
features and descriptors form the basis of our solution. 
 
3. Methods 
 
3.1 Implementation 
 
All new algorithms developed for this project are 
implemented in MATLAB. They could eventually be 
ported to a real-time implementation that runs on camera 
hardware. This long-term goal is kept in mind in design 
decisions: tracking/recognition is dependent only on data 
found in the current frame and previous frames. No pre-
acquired training data is necessary. 
 
3.2 Interface 
 
A prototype interface is provided to allow the user to target 
an object in the center of view in the first frame. A throttle 
allows the region to enlarge or shrink. Once this region is 
determined, the tracking process commences. 
 
3.3 Object Recognition 
 
In each frame, a SIFT feature detection pass is conducted 
over the entire image using [LOWE03B]. 4x4x8 SIFT 
descriptors are constructed for features in the image region 

with a prominence above a certain threshold. Features 
within the target range are catalogued in a database 
(MATLAB array) for the target object. 

SIFT features detected inside the user-specified range 
while outside of the face silhouette could accidentally be 
included in the databases and unwittingly tracked. To 
prevent this, the gradient-based method proposed in 
[BIRCHFIELD97] can be used to optionally fit an ellipse 
to the object’s silhouette. The algorithm identifies the 
ellipse state (s) that maximizes gradient magnitude (gi) over 
the perimeter of the ellipse in a small search space (S). Nσ 
represents the number of pixels in the perimeter. 

 

 
The ellipse’s aspect ratio will be equal to the aspect 

ratio of the targeted image region. Thus, only features 
detected inside the silhouette will be added to the feature 
database. 

In the following frames, SIFT feature detection is 
performed on the entire image, and detected features are 
compared to the existing database of target features using a 
Euclidean cost function. A Hough transform is used to 
detect the object elsewhere in the scene through feature 
clusters as described in [LOWE03]. Large Hough 
orientation bins are used to accommodate rigid and non-
rigid transforms.  

The Hough Orientation bin with the most votes is 
chosen as the orientation of the primary object in the scene. 
The corresponding affine transformation is then computed 
from the agreeable feature locations in the bin using the 
least-squares approach described in [LOWE03]: 

 
            A:      x:          b: 

 
 

 
 

The transformation is applied to all detected features, and 
outliers are removed.  

If the transformation is agreeable with a sufficient 
number of features, this transformation is used to transform 
the primary target ellipse. If the affine-transformed ellipse 
does not provide a close enough match, the 
[BIRCHFIELD97] method could be re-used at every frame.  

If an insufficient number of features remain after 
outliers are removed, the selected object is determined to be 
a false-positive. The true target is assumed to be occluded 
or off-screen. In this case, the algorithm continues to 
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Figure 2: Basic Program Flow  
(No Pre- and Post-processing steps) 

‘Good’ and ‘Bad’ feature databases initialized 
In Frame 1: 
{ 
 Target image region is selected by user; 
  Region is optionally fitted to ellipse/quad; 
 Detect SIFT features over whole image; 
 FOR (all SIFT features above prominence threshold): 
  Create SIFT descriptors; 
 Add Feature descriptors in target region to ‘good’ feature database; 

FOR (all features detected outside of target region): 
 Compute matches with features in ‘good’ feature database; 
FOR (all matched features): 

Perform Hough transform to detect clusters; 
FOR (all Hough transform bins with >3 votes): 
{ 
 WHILE(# of inliers>threshold AND transformed points are within an error threshold) 
 { 
  Compute affine transformation for cluster; 
  Remove outliers; 

}  
 IF (cluster has # of features > threshold): 

{ 
  Transform a temporary target region; 
  Add all features within the temporary region to ‘bad’ feature database; 
  DRAW the obfuscating shape on the output frame; 
  DISPLAY the output frame. 

} 
} 

} 
FOR (All Subsequent Frames): 
{ 
 Detect SIFT features over whole image; 
 FOR (all SIFT features above prominence threshold): 
  Create SIFT descriptors; 

Match descriptors with features in ‘good’ and ‘bad’ databases 
FOR (all matched features): 

Perform Hough transform with positive/negative voting to detect primary (target) 
cluster; 
Select the Hough transform bin with largest # of votes: 
 WHILE(# of inliers>threshold AND transformed points are within an error threshold) 
 { 
  Compute affine transformation for cluster; 
  Remove outliers; 

}  
 IF (cluster has # features > threshold) 
 { 
  Transform the target region; 
  Add all features within the region to ‘good’ feature database; 
  DRAW the obfuscating shape on the output frame; 
  DISPLAY the output frame; 

} 
 
FOR (all matched features): 

Perform Hough transform with positive/positive voting to detect all other clusters; 
FOR (all Hough transform bins with >3 votes): 
{ 
 Compute affine transformation for cluster; 
 Remove outliers; 
 IF (cluster has # of features > threshold): 

{ 
  Transform a temporary target region; 
  Add all features within the temporary region to ‘bad’ feature database; 

} 
}
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search for the primary object in subsequent frames, and 
continues to track similar-looking objects to prevent 
incorrect obfuscation as described below. 
 
3.4 Dynamic Learning 
 
Since some rotation/illumination/expression change may 
have occurred, a new frame provides an additional ‘view’ 
with which to enhance the target object feature database 
dynamically. Prominent SIFT features found in this 
slightly-shifted region are added to the database 
accordingly. Their descriptor location and orientation is 
stored relative to the frame-of-reference of the initial video 
frame, generated using the computed affine transform. This 
novel approach allows the system to dynamically ‘learn’ 
about features in new orientations as they arrive. 

Many usage scenarios require the system to 
discriminate between multiple similar objects in the scene. 
In the most trying cases, the target will leave the scene, and 
several false-subjects will remain. The ability to track these 
potential false-positives throughout recording is a unique 
component of our algorithm. At every frame, once the most 
prominent Hough cluster is selected, all other orientations 
with a large number of matching features will be 
considered a ‘potentially hazardous’ cluster. These clusters 
may be incorrectly censored if the primary target is 
occluded or leaves the frame. If such a cluster is 
sufficiently far from the primary target, it is treated as a 
‘bad cluster’. Just as with the ‘good cluster’, an affine 
transformation is computed for the ‘bad cluster’, and an 
elliptical window around this cluster is used to identify 
undiscovered ‘bad’ features. These features are necessary 
to discriminate the similar but wrong subjects from the 
primary target. They are therefore stored in a separate 
database of ‘bad’ features. In subsequent frames, detected 
features are compared to both ‘good’ and ‘bad’ databases 
and participate in the Hough voting scheme. Unlike the 
‘good’ features, features that match with the ‘bad’ features 
vote with a negative weight. They will vote against a 
certain orientation, preventing incorrect clusters from being 
obfuscated.  

This unique approach allows the system to remain 
aware of all potentially hazardous objects in the scene. 
Combined with the innate ability of SIFT features and 
descriptors to discriminate between similar objects, this 
system should effectively avoid incorrect obfuscation. 
 
 
4. Results 
 
Preliminary investigation focused on determining the 
effectiveness of using SIFT features in this domain, as well 
as testing other feature detection methods. 

Initial data was collected from relevant cable TV-
broadcasts, using an ATI 9700 All-in-Wonder TV Tuner 

Card at an input resolution of 640x480.  As part of the 
acquisition process, input data was automatically MPEG-2 
compressed by the video capture card as it was digitized. 

A variety of non-SIFT tracking algorithms were tested, 
including OpenCV implementations of Lukas-Kanade, 
Haar-based face detection, and Kalman filtering. All of 
these methods showed promising local tracking results, but 
appeared insufficient for the global tracking/reacquisition 
problem with multiple similar subjects. A solution 
providing improved lighting and transform invariance was 
required.  

Initial SIFT algorithm tests were performed using two 
implementations: MATLAB [ETTINGER02] and the pre-
compiled Linux implementation provided by Lowe 
[LOWE03B].  A performance comparison demonstrated an 
order-of-magnitude speed advantage for the precompiled 
version. The Lowe implementation took 7 seconds to detect 
SIFT features and generate normalized descriptors on a 
720x480 video frame. The MATLAB implementation took 
59 seconds for detection only. These tests were conducted 
on the same linux workstation running at 1 GHz, with 512 
MB of RAM. Lowe’s implementation also includes a rapid 
Best-Bin-First (BBF) comparison algorithm [BEIS97] for 
feature matching. 

These tests illustrated several SIFT failure scenarios. 
The SIFT detection algorithm showed a distinct tendency to 
latch onto signal static and compression artifacts. This 
significantly reduced temporal and spatial coherence 
between detected features. Detection quality was further 
reduced by the fact that the image was a scaled result of a 
low-resolution analog television signal. These tests 
indicated that higher-quality input data was necessary.   

Additional control data was collected using a Sony 
DCR-TC120 Digital Video Camera. Two gigabytes of DV-
Compressed data was collected at 720x480 resolution. 
Collected data includes clips with varying: 

• Indoor and outdoor lighting conditions, including 
transitions between them. 

• Subject motions into and around camera view 
• Subject rotations 
• Camera motion/zoom 
• Full/partial occlusion by objects and other subjects 

 
Data was separated into clips and converted into 

uncompressed AVI format for import into MATLAB and 
subsequent SIFT processing. This data produced more 
promising results. The higher-resolution images yielded a 
larger set of more prominent SIFT features.  Although DV 
compression caused some subtle artifacting, detected SIFT 
features had much stronger temporal coherence. 

Nonetheless, results indicate that SIFT detection 
capability is reduced in the following scenarios: 

• Changing lighting conditions 
• Motion Blur 
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Controlled comparisons between video frames were 
used to determine how well the SIFT algorithm 
distinguishes between facial features of different subjects. 
SIFT generated positive matches when comparing two 
images of the same subject in different orientations (Figure 
4).  

In order to test the possibility of mismatches due to the 
exit of the target and subsequent entry of a similar subject, 
we performed a match test of two similar subjects in nearly 
identical poses (Figure 6).  Few facial matches were 
produced, suggesting that SIFT may not be easily confused 
between different human subjects in a scene. 

In additional tests, SIFT performed well in matching 
two different facial expressions by the same subject, as well 
as two images displaying the subject at a different scale 
(Figure 5). 

A preliminary interface was also developed in 
MATLAB to allow a target region to be selected with the 
mouse (Figure 3).  The interface enables a user to click and 
drag a rectangle around a target region.  Upon releasing the 
mouse, a Gaussian blur is applied to the region to 
demonstrate the obfuscation effect, and the region 
coordinates are displayed.   

 
 

 
Figure 3: Screenshot of the preliminary user interface. 

 
 
 

 

 
Figure 4: SIFT performs well when matching features 
across object rotation in depth at video resolution. 
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Figure 5: SIFT's invariance to non-rigid deformation is demonstrated by accurate facial feature 
matching.  SIFT also correctly matches features across changes in scale.

Figure 6: SIFT generates many matches between different poses of the same subject, but very few 
matches between different, similar subjects in the same pose.
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5. Next Steps 
 
The immediate next step involves writing an automated 
UNIX/MATLAB script that separates image frames from 
video, executes the [LOWE03B] feature detection program, 
and places the resulting matches and descriptors into 
MATLAB arrays. Once this data is readily available, 
algorithms can be rapidly tested as they are developed. A 
MATLAB script to interface with the [LOWE03B] 
comparison algorithm would also be useful. Utilization of 
these faster, precompiled utilities will allow development 
time to be devoted to novel aspects of the algorithms. 

The following step will be to implement our modified 
affine warped Hough transform object-tracking algorithm 
with the positive/negative bin voting scheme as described 
in Section 3.  

The new obfuscation-shape will be drawn and an 
implicit function calculated to determine whether newly-
discovered features lie within its limits. A method to 
dynamically add new detected features to the two feature 
databases would be developed. The ability of the algorithm 
to detect prominent, recurring ‘bad’ features, will impact 
the negative weights needed for these features to prevent 
false-positive results. A slew of tests on all of the input data 
could be used to optimize these and other parameters: 

• Feature prominence threshold 
• Organization/range of Hough Transform bins; 

larger will be needed to account for non-rigid 
deformations 

• ‘Bad’ feature negative Hough Transform weights 
• Number of Hough Transform inliers below which 

object is considered out-of-view 
If the affine-transformed ellipse does not consistently 

obscure the entire object, other methods will be needed. 
The gradient-based method proposed in [BIRCHFIELD97] 
could be implemented to fit an ellipse to the object’s 
silhouette. An alternative approach would be to record the 
ratio of feature distances from the center of the ellipse and 
outline, respectively, for each new feature detected. Thus, 
after the target object is detected in a frame, the features 
that yielded this detection could automatically establish the 
dimensions of the new ellipse based on a best-fit algorithm 
which maintained the original distance ratios. This ellipse 
could be further optimized using the implementation 
described in [BIRCHFIELD97]. 

It is possible that the negative-voting scheme may 
cause ‘bad’ objects to be quickly ignored, but then 
intermittently reconsidered as the object sufficiently 
changes view. To prevent this, two voting passes may be 
needed: One using the positive/negative scheme to 
determine the primary target, and another using a 
positive/positive scheme to determine competitive clusters 
once the primary target has been identified. This will allow 
a more continuous tracking of bad clusters. 

Initial results have shown that only a small percentage 
of detected SIFT features tend to be continually detected in 
subsequent frames. It can be assumed that the others are not 
sufficiently resilient to image variance. As such, an 
additional voting scheme could be implemented to ‘retire’ 
features in both databases that have only appeared in one 
frame. In addition to reducing computational complexity 
and storage, this may also reduce the chances of false 
positives due to noise. 

A possible problem could arise if the target subject 
leaves the scene, and a similar-looking but different subject 
subsequently enters. Initial results indicate that few SIFT 
features (if any) are matched between two different faces 
with similar visual features; therefore, a heuristic which 
takes into account the number of positive matches achieved 
on the target subject in previous frames could be used to 
determine how many Hough inliers are needed to confirm a 
correct object match. 

Several potential factors may still adversely affect the 
SIFT algorithm’s ability to discriminate features. These 
include: 

• Lighting changes 
• Motion blur 

If varying lighting conditions are not sufficiently 
compensated-for by the algorithm, a biologically-inspired 
method described in [ROSS00] could be used. By dividing 
Difference of Gaussian (DOG) points with a Sum of 
Gaussian (SOG), greater lighting robustness can be 
achieved. This would likely require reversion to the 
[ETTINGER02] SIFT framework, which does not currently 
build descriptors (this code would also need to be written). 
Motion blur can be reduced by increasing shutter speed via 
more expensive hardware. We propose the following 
potential solution as a pre-processing step, in software, if 
SIFT detection fails due to camera motion blur: 
 

1. Compute optical flow using existing image 
pyramids and gradient-descent methods 

2. Correct for motion blur in the optical flow using 
camera’s intrinsic parameters as described in 
[TIMONER01] 

3. Use a high-pass sharpening filter scaled along the 
direction of optical flow across the image. 

 
This method can potentially provide far better results 

than a generalized high-pass filter over the entire image. An 
unscaled filter would likely cause sharpening artifacts in 
unblurred sections of the image, resulting in similar SIFT 
errors as found with compression. This filter guarantees 
that only moving areas in the image are sharpened. The 
sharpening is based upon a Gaussian model for motion 
blur. 
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6. Conclusion 
 
SIFT features show promise as the basis of a solution for 
live video obfuscation, and are a preferred choice over 
other matching algorithms for their robustness and 
transformation invariance.  In our tests, SIFT accurately 
matched numerous features between the target face in the 
initial image and transformed views of the target in 
subsequent frames, while producing few or no matches to 
other faces or objects in the scene.  These results suggest 
that an implementation in which new features are identified 
and continuously added to the match database will be able 
to smoothly track and obfuscate a target object as it 
undergoes unpredictable transformations.  In addition, a 
variation of the Hough transform clustering approach 
described by Lowe has been devised that will track both the 
primary target and similar objects, as a measure to prevent 
mismatches in future frames.  Simultaneously, several 
potential algorithm failure scenarios have been identified, 
along with appropriate solutions. 
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