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Abstract 
Diffusion tensor imaging (DTI), which measures the diffusion characteristics of water molecules in the brain, is an important technique for inferring the structure of the white matter tracts. However, DTI data is often underexploited in current techniques for segmentation and classification of these tracts. By incorporating not only scalar measures of diffusion such as fractional anisotropy, but also the diffusion directions, proximity to similarly oriented points, and a priori information about the location of major fiber bundles, this project aims to develop more effective segmentation and classification algorithms.
Introduction 

Diffusion tensor imaging is a relatively recent technique which measures the probability distribution of water molecules’ positions in a fixed time period to infer the anatomy of the surrounding tissues. One popular application is the identification and examination of the white matter tracts in the brain. DTI is currently one of the only noninvasive, in vivo imaging techniques that reflects white matter anatomy [Wiegell, Larsson, and Wedeen]. One recent study has established links between white matter structure and reading ability in children [Deutsch, Siok, Dougherty, Bammer, Gabrieli and Wandell]. Other studies have used DTI data in assessing neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis [Wiegell, Larsson, Wedeen], as well as brain ischemia in cats [Le Bihan].


The field of DTI is still relatively new, having emerged only in the mid-1980s as a type of magnetic resonance imaging procedure. Thus, finding techniques for segmentation and identification of white matter tracts is still a goal of active research. DTI is currently being used to identify some major white matter tracts, namely the corpus callosum and callosal projections, the corona radiata, and the superior longitudinal fasciculus, whose characteristics are believed to be important to ongoing investigations of reading ability [Dougherty and Wandell, personal communications]. 


We have a three-stage approach:

1. Preprocess the image, using fractional anisotropy (FA) to separate the white matter from the grey matter and fluid.

2. Segment the white matter with a graph-cutting technique, such as n-cuts or a modified k-means.  The edge weights are computed from the entire DTI tensor and the relative positions of the voxels.

3. Classify the corpus callosum and if possible, the corona radiata and superior longitudinal fasciculus of the segmented image, by identifying prominent features of each cluster such as position and fiber orientation, and using an atlas or adaboost algorithm.

This approach is promising because it combines and extends several successful techniques.  FA is a well-established method for separating the white matter from grey matter and ventricles, and from FA images alone, major white matter tracts may already be visually identified, as shown in the Results section. Graph-cutting algorithms have been used successfully in segmenting 2D images, and it tends to avoid the cumulative error of techniques that start from a single “seed” point and then progressively expand to a few neighboring voxels at a time (e.g. fiber-tracing and simulated diffusion algorithms).

Our preliminary fractional anisotropy-based threshold procedure yielded most of the white matter tracts and removed the grey matter, air, and fluid filled ventricles. The thresholding procedure also scaled the intensity of the resulting image according to a simple dot product-based similarity measure between each voxel and its six closest non-diagonal neighbors. This resulted in high intensity in one major region of interest, the corpus callosum, as compared to the surrounding ventricles and thalamus. The results suggest that the FA thresholding procedure is suitable for reducing the size of the data set and still retaining the white matter regions of interest. We hope to achieve a reasonable trade off between heavy computation and the easier O(n) thresholding algorithm followed by heavier but more accurate computation on a smaller subset of data.

Background

A diffusion tensor is a 3x3 matrix in which each element expresses a diffusion coefficient in the direction given by the subscript as shown below.
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 Thus, DTI data consists of a MxNxPx6 matrix containing the six independent diffusion tensors Dxx, Dyy, Dzz, Dxy, Dxz, Dyz. The principal diffusion direction is the eigenvector of D with the greatest eigenvalue. In addition, a number of rotationally invariant scalar-valued metrics have been defined. These are the fractional anisotropy (FA) and relative anisotropy (RA):
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To date, techniques for segmentation and identification of white matter tracts have included fiber tracking algorithms as well as direct thresholding based on the principal diffusion direction or scalar measures of diffusion. These methods, however, have proven suboptimal for several reasons. The fiber tracking algorithm, for instance, fails at nerve fiber crossings and tends to be misled by other fiber bundles in close proximity to the one being traced [Fillard, Gilmore, Piven, Lin, Gerig]. In addition, referencing each tracking step to the one before leads to cumulative error [Dougherty, personal communications]. 
Several methods use only the principal diffusion direction or fractional anisotropy, a scalar index of the dominance of the principal diffusion direction, but no directional information. Others use measures computed from the lengths of the x-, y- and z-diffusion vectors, but this is dependent on the coordinate axes of the imaging equipment and does not reflect an actual physical parameter or quantity  [Le Bihan] 
The difficulty of the problem is exacerbated by the lack of a gold standard, because white matter tracts are still not fully characterized in terms of anatomical location, structure and function. [Dougherty, personal communications] Indeed, some researchers have focused on building a statistical model of the white matter tracts [Alexander, Gee, Bajcsy].

Detailed Approach 


We are using a three-stage approach that consists of preprocessing, graph-cutting, and classification. In the first step, the data is thresholded at an FA of 0.15, eliminating voxels that are too isotropic to be part of fiber bundles. With the data space reduced, a more computationally intensive method may be applied for the subsequent steps. Our approach is set out as follows: 

Preprocessing

In the preprocessing stage of our approach, we use the FA to separate the white matter from the grey matter and fluid.  Grey matter and fluid have a low FA, because water tends to diffuse equally in all directions.  Even within the white matter, the FA tends to be higher in some regions than others.  For example, the corpus callosum has a very high FA near the center of the brain, and gradually disperses as it nears the occipital lobe, with an arbitrary boundary at about FA = 0.1-0.2. [Dougherty, personal communications]
FA thresholding is a very fast algorithm, and can be used without any further enhancement to obtain a reasonably good model of the brain’s structure, but fails to separate one fiber bundle from a nearby bundle with a similar FA.  In this project, it is used primarily as a preprocessing step for the graph-cutting algorithm, which is very memory intensive and computationally expensive by comparison.

FA-based thresholding can be used to remove all voxels from the image that have an FA of less than 0.15 or so.  This reduces the number of voxels that the graph-cutting algorithm has to process by at least a factor of 2, making the problem more tractable.

Further steps include transitioning to a multi-pass segmentation algorithm, in which the preprocessing is alternated with progressively finer graph-cutting.  This approach relies on the fact that the graph-cutting algorithm (described below) can be performed at various levels of detail, from a rough graph that only considers the 6 nearest neighbors of each voxel, to a finely-detailed graph that draws edges between a voxel and hundreds of neighbors.  (In 3D space, there are 124 neighboring voxels just within 2 voxels of a voxel of interest.)  In the first pass, we perform FA thresholding as described above, and perform a rough graph-cutting of the rest of the brain.  We can then enhance the detail of a cluster by masking off the brain in a region around the cluster, and doing another graph-cut with a finer level of detail.

Depending on time constraints, a compromise between those two approaches is to use FA and a priori knowledge of the brain’s structure to isolate one region of the brain – such as the area surrounding the corpus callosum – and then call the graph-cutting algorithm to find the desired cluster within that region. 

Graph Cutting

Graph-cutting algorithms have not been widely applied to DTI scans yet, but they have enjoyed success in 2D image processing.  By substituting voxels for pixels, we plan to use the same technique for 3D processing.

In the graph-cutting technique, each voxel is a node of a graph, with edge weights that indicate the probability that the two voxels are part of the same object.  In 2D images, the edge weights are normally a function of the Euclidean distance and color difference between the pixels.  The edge weights are normally stored in a sparse symmetric “affinity matrix” W, in which element wij represents the edge weight between pixel i and pixel j.  The goal is to find the minimally weighted cuts that separate the graph into clusters of objects. 

Naturally, to reduce computation and memory requirements, only the edge weights between a voxel and its nearest neighbors are considered.  As mentioned in the preprocessing section, this can be done with various degrees of granularity.

Graph-cutting has significant advantages over existing approaches for DTI segmentation, such as fiber-tracing and simulated diffusion.  Both of those approaches rely on choosing one voxel as a “seed point”, and then creating a “wavefront” that progressively moves away from the seed point.

One problem with those approaches is that they suffer from cumulative errors as they move further from the seed point.  Graph-cutting avoids this problem by looking at the entire image at once, rather than a localized region around the wavefront.

Furthermore, the existing techniques tend to only consider one feature of the DTI.  For example, fiber tracing only considers the orientation of the principal eigenvector.  With graph-cutting, it is possible to invent an edge-weight formula that uses the entire DTI matrix.

Affinity Metric  
There are two major components to graph-cutting:  the mathematical model used to compute the edge weights, and the algorithm used to cut edges.  In this case, we want the edge weight to reflect the following considerations:

· Distance: Nearby voxels should have stronger edges than faraway voxels

· Similarity: Voxels with similar DTI matrices should have stronger edges.  Most existing approaches use only one feature of the DTI – usually the direction of the principal eigenvector.  However, we feel that voxels in the same fiber bundle would probably have similar minor eigenvectors as well.

· Alignment:  If two voxels have principal eigenvectors that are approximately parallel to the line connecting them, then they are much more likely to be part of the same fiber bundle.

Currently, we are experimenting with the following affinity metric:
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This formula may look complicated, but it is actually the product of two simple metrics.

In the numerator, Di·Dj is the dot-product of the DTI matrices for each voxel.  This is a fast, rotationally-independent measure of the similarity between two voxels, but in future development it may be replaced by the metric described by Alexander et al.

In the denominator, rij is the vector between the two voxels, Vi is the eigenvector matrix for voxel i, and Λi is the corresponding diagonal eigenvalue matrix.  Thus, each term in the denominator is a modified Euclidean distance.  If voxel i is perfectly isotropic, then Λi-1ViTrij is simply the Euclidean distance to voxel j.  However, if voxel i is anisotropic, then the distance measurement is scaled by the eigenvalues, so that voxels along the principal eigenvector appear closer than voxels along a minor eigenvector.  This formula combines the distance and similarity considerations mentioned above.

Both the numerator and denominator are normalized, so that the total affinity of all of a voxel’s edges will not be unduly affected by large or small values in the Di or Λi matrices.  In practice, some ε values are added at appropriate places to prevent small numbers from having too much influence.
Algorithm 
That leaves the graph-cutting algorithm.  A simple graph-cutting technique is to take the eigenvectors of the affinity matrix W with the highest eigenvalues, but this has the known problem of “mixing together” objects with similar eigenvalues.  The n-cuts algorithm [Shi, Malik] seemed promising, but upon inspection of the algorithm, it seems to simply replace the eigenvectors of W with the eigenvectors of W’, where W’ is formed by dividing each row of W by the sum of all elements in the row.

A more promising candidate is a modified k-means algorithm, in which we iteratively find a segmentation with minimal cuts.  The most common pitfall of minimal cutting is that, since all edge weights are positive, the truly minimal segmentation is no cut, followed by cutting away a single voxel.  To overcome these problems, we can subtract a small constant from each element of the affinity matrix to create a “repulsion field” between the voxels.  The hope is that this “repulsion field” will encourage the voxels to form separate clusters.  However, this requires further experimentation.

Classification

In order to demonstrate the segmentation algorithm, we aim to classify at least the corpus callosum. One possible approach would be comparing the segmented image to an atlas of the brain, which uses a priori information about typical brain structure to identify the voxels that are normally part of the corpus callosum.  The cluster that shows the most overlap with this region would probably be the corpus callosum.

A more sophisticated approach is to take the segmented image and extract features of each cluster, such as the size, position, fiber orientation, FA, and possibly some abstracts such as shape.  We can thus map each cluster into an N-dimensional feature space, and use an algorithm such as adaboost to identify each cluster.  Adaboost has been highly successful in such problems in the past.
Preliminary Results 

Our preliminary results are obtained from running the initial preprocessing step, which thresholds away the outer cortex of grey matter as well as most of the air and fluid-filled ventricles in the image, then assigns each voxel a new intensity value equal to the square root of the sum of the dot product of its principal diffusion vector with that of its six nearest neighbors, that is:
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where N(i,j,k) includes the six nearest non-diagonal neighboring voxels of (i,j,k),  V1 refers to the principal diffusion direction and λ1 is its corresponding eigenvalue. The images shown below are 60 axial slices through the brain beginning from the base of the brain, with voxel size 2mm by 2mm by 2mm. In the images the higher intensity regions seen in the center belong to the corpus callosum and the callosal projections. In general the grey matter and fluid-filled regions tend to exhibit isotropic diffusion and hence low FA values, since a water molecule is not constrained by the presence of water-impeding nerve fiber bundles in these regions. 
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Fig.1 Axial slices 1-20 of brain after FA thresholding
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Fig.2 Axial slices 21-40 of brain after FA thresholding
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Fig.3 Axial slices 41-60 of brain after FA thresholding

The images obtained demonstrate our ability to discriminate between various parts of brain anatomy by fractional anisotropy and thereby focus our segmentation algorithm on the relevant portions of the brain. 


However, in these images, there appears to be no separation of the individual nerve fiber bundles, except for the corpus callosum. This is because only using the FA and principal diffusion direction neglects significant similarity information which may be present in the medium and minor diffusion directions [Alexander, Gee, Bajcsy]. The subsequent clustering and further segmentation using the affinity matrix will exploit this information as additional similarity features.
Further Development
We have accomplished our goal of using FA thresholding to create preliminary maps of the brain, investigated the considerations involved with a graph-cutting algorithm, and done preliminary experiments with a particular edge-weight metric.

Further steps will include:

· Using the existing FA algorithm to create an effective preprocessor

· Improving the affinity-metric code, and developing the graph-cutting algorithm.
· If possible, deriving features from the segmented image, and using them to create an effective classifier
The simplest preprocessor is one that can perform FA thresholding, as described above.  That procedure has already demonstrated considerable success.

A multi-stage preprocessor would be more difficult, but it has the potential to greatly reduce the computation time.  In initial experiments, it took ~14 hours just to create an affinity matrix that drew edges to the 26 nearest neighbors of each voxel, 2 hours to create the affinity matrix for a pyramid image with half the dimensions of the original image, and approximately 30 minutes to create a matrix for the 6 nearest neighbors of a half-size image.  While this time can be reduced by porting more of the code from MATLAB to C, the benefits of a good preprocessor are undeniable.  If this cannot be accomplished, we will have to resign ourselves to an algorithm that takes a very long time to run, or a segmentation with reduced detail.

The most difficult area is the graph-cutting algorithm, for which most of the work done so far has been strictly theoretical.  We have seen some preliminary results by taking eigenvectors of the affinity matrix, but success using that approach has been unsatisfactory.  If this is not accomplished, then a possible alternative could be to create a segmentation algorithm by thresholding the images currently obtained from taking into account each voxel’s FA and the dot-product of its principal eigenvector with its neighbors.  
The final stage of the project is to classify the segmented image. Initially, we plan to use a simple atlas that identifies several clusters based only on their spatial positions.  Later, we hope to develop a more elaborate feature-based algorithm.
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