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Motion Segmentation is the attribution of motion information to elements in a visual
scene.  Here we propose a motion segmentation algorithm that uses the properties of

motion sensitive neurons as inspiration for its fundamental units.  Each unit is treated as
a local Bayesian estimator embedded in a larger belief network.  The heuristics that we
employ to drive segmentation in this network is that there should be at most one motion

at each point in space.

Introduction:

Motion is one of the best understood aspects of visual processing in the brain.  We

know a lot about how motion is perceived by biological visual systems [Adelson &

Movshon 1982].  We know a surprising amount about how motion information is

represented in the brain [Albright 1993].  We even have some good ideas about how

biological systems might extract motion information from the visual scene [Adelson &

Bergen 1985, Simoncelli 1993].  But we know shamefully little about how motion

information is combined across space and time to construct a “motion scene.”

To interpret the visual world, any system must parse the continuous stream of sensory

input into distinct salient elements.  This is true in the simplest case of foreground

background segregation all the way through the difficult task of object recognition.  It is

no different in the realm of motion vision.  To estimate the motion of objects well,

information must be combined across space and time - but not across sources.  Motion

elements must be segmented from each other and from the motion of the background to

allow a system to make intelligent judgments about its environment.  But how?  Can we

use what we know about biological vision to construct an algorithm?

A particularly compelling example of the need for this algorithm is the case of motion

transparency.  Motion transparency occurs whenever two motions appear in the same

region of space.  This might happen in a reflection on a pane of glass, or in the translating

specularities of a moving reflective object, or in the jungle as the shadows of leave

shimmer across the form of an approaching predator.  In these cases it is the motion itself



that allows us to separate one object from another.  Because this is such a crisp example

the challenges of motion segmentation, we will use a synthetic example of motion

transparency to explore our algorithm.  In addition we will use human perception of this

example as inspiration for how to construct our algorithm.

Broadly, our approach will be to construct an interconnected network of local motion

processors.  The characteristics of each processing unit will be taken very directly from

known properties of neurons in are MT of the primate visual cortex – the apparent seat of

motion processing in the human brain.  We will interpret the output of these unit as a

Bayesian estimate of the probability of local motion given the images, and use belief

propagation to reason about the motion scene.

The goal of this approach is really two fold.  Not only might we construct a algorithm

which successfully segments a motion scene, we might generate testable hypothesis for

future neurophysiological studies of motion processing.

Introduction:

Consider the following synthetic motion transparency scene.  We sparsely populate a

region of an otherwise blank screen with high contrast Gaussian dots.  [See Fig 1A.]  At

random we select half of the dots to drift with an arbitrary velocity – meaning that on

each frame we displace each dot within this population by the same horizontal and

vertical position.  The dots move in this direction on each subsequent frame until they

reach the end of the boundary of our region, at which time they are redrawn to appear at

the opposite boundary.  The other half of the dots, not yet accounted for drift in an

different arbitrary velocity.  [See Fig 1B.]  We will call this motion presentation

Transparent Random Moving Dots, or TRMD.

What is the percept human observers experience when viewing a TRMD?  It is not a

collection of dots, each moving independently.  Rather, all the dots moving in a particular

direction appear to grouped - intuitively belong to the same object.  The two species of

dots seem to coalesce into two distinct transparent textured sheets sliding across each

other.



Interestingly, many observers report an apparent difference in the depth of these

surfaces.  The display is ambiguous however – there is no information in the visual scene

that gives a cue as to which sheet of dots is in the foreground, and which is in the

background.  The inherent ambiguity of this display induces a bistabilty to this percept.

In particular, though the apparent depth ordering of the dot planes may be stable for many

seconds, it varies from presentation to presentation of an identical stimulus reminiscent of

the famed Necker cube.  [See Fig 1C.]  We use this apparent crosstalk between motion

processing and depth perception when viewing the TRMD as inspiration on how to

segment transparent motion.

Figure 1

Now we turn our attention to some observations about motion processing in the brain

in area MT.  The neurons in area MT are some of the most well studied in the primate

visual system, if not the entire brain.  We can sketch some of their basic properties here

to guide our thinking.  Like many neurons in the visual system, they respond only to part

of image, called the receptive field.  These receptive fields tile the image in largely

overlapping fashion, with neurons responding to adjacent receptive fields adjacent and

most densely connected in the brain.  [See Fig 2A.]  Receptive fields tend not to have

crisp boundaries, or perfectly symmetric shapes, but they can be well approximated as

Gaussian masks through which the neuron views the world.

As a whole, we said that area MT processes visual motion - but what does that mean

in terms of individual neurons?  Each neuron appears to be a tuned nonlinear filter,

responding most vigorously to a particular type of motion within its receptive field.  In



simplest terms, each neuron has a preferred direction and speed of motion to which it

responds regardless of spatial scale, image contrast, etc.  Typically MT neurons give little

or no response to motions that differ significantly from this preferred ideal, and so are

often thought of as having a velocity tuning that is the product of Gaussians in radial

coordinates.  [See Fig 2B.]

A third interesting property of MT neurons is that a great many of them are sensitive

to stereo vision cues.  Most MT neurons respond strongly to motion with zero binocular

disparity – that is to motion in the plane containing the point to which the eyes are

verged.  But many neurons respond better to motion in a band beyond (negative

disparity) or before (positive disparity) this plane.  [See Fig 2C.]  While this

intermingling of stereo and motion information is at first puzzling, we will make use of

this to help solve the motion segmentation problem.

Figure 2



Approach:

If it is indeed the task of the motion vision system to estimate object motion, then the

properties of physical objects (the ultimate source of visual input) provide important

constraints to resolve the ambiguity in the visual scene.  In the case of transparency, we

offer the following supposition as a constraint:  there is at most one object, and thus one

object motion, at any point in space.  Rarely, if ever, are there truly two object motions at

a single location in a natural scene.  Therefore, a motion system concerned with objects

need only represent one motion at each point in space.  A visual system with the capacity

to represent several well-defined object motions per point would not only be wasteful, but

critically, would tend to proliferate uncertainty into the most unlikely of scene

interpretations.

If the one-point-one-motion conjecture is correct, we would predict that when a visual

system is confronted with an artificial stimulus where there are two motions a single

point, such as the TRMD, it must make a compromise.  It must either ignore one of the

motions entirely, or it must represent the two motions at different spatial locations.

Given that the visual system can in principle extract motion and localize elements in

angular space more confidently than it can localize elements in depth, the parsimonious

choice would be to attribute the inconsistency to an error in depth judgment.  The

phenomenology of the TRMD depth illusion may be an example of just this.  Were the

human visual system subject to the one-point-one-motion constraint, we would expect it

to represent the two motions of the TRMD at different depths despite there being no other

evidence to support this.  Thus, the one-point-one-motion conjecture offers a convenient

explanation for the TRMD depth illusion, and will serve as the central principle directing

our algothim.

To be specific, we propose to create an ensemble of artificial neurons with response

properties similar to that of real MT neurons.  We will construct these units so that as a

population, these neurons compute a probability distribution over motion vectors given

the local information available in their receptive fields.  These Bayesian motions

estimates will be based on a Gaussian model of image noise, combined with a prior for



smooth and slow motions.  We will in turn use these local estimates as nodes in a Markov

Random Field that combines information across space and attempts to relax conflict

among the nodes.  This process amounts to an implicit solution of the motion

segmentation problem, which groups coherent motion elements and segregates disparate

ones.  The representational trick is to have incompatible (non-common-fate) motions

repel each other in the 3rd dimension of binocular disparity, thus implementing the one-

point-one-motion constraint.  This can be done by constructing a single compatibility

capturing this notion and then employing Loopy Belief Propagation to iterate toward a

single stable segmentation of the motion scene.

As an input for our model we construct simple synthetic motion stimuli, like those

used to study MT neurons.  In particular, we made movies of the transparent random

moving dot pattern described above.  Each dot is white Gaussian blob on a black

background, which drifts in one of two directions at a speed less than one standard

deviation per frame (so that correspondence can be established trivial).  Call each frame

of the movie I(x,y) and the resulting image sequence I(x,y,t) .  We won’t consider any

depth information being present at the input – as if you were verging on the screen the

movie was playing on and there was nothing else in the field of view.  This means the

disparity map associated with each frame is zero for all locations and all times, so we can

simply write: I(x,y,t,d) = I(x,y,t) for d = 0 , and I(x,y,t,d) = 0 otherwise.

Each model neuron has five parameters: ˆ x  and ˆ y  the location of its receptive field in

image coordinates, the two parameters of its preferred motion vector ˆ v , and ˆ d  its

preferred stereo disparity.  We can capture the receptive field sensitivity profile and the

disparity tuning of this neuron with a three dimensional Gaussian mask,
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where the product is over all points i where the mask is non-zero.  Common assumptions

are that the prior P( ˆ v )  is a symmetric Gaussian centered at zero – biasing us toward

small velocity estimates, and that the likelihood function P(I(xi,yi,t,di) | v) is of the form

P(I(xi,yi,t,di) | v) exp 1
2 2 wi(x,y) Ixvx + Iyvy + It( )

2
dxdy[ ]

where wi(x,y)  is a small window centered around (xi,yi) and Ik k
I x,y,t,d( ) .  This

likelihood function can be derived assuming smooth motion within wi(x,y), intensity

constancy, and independent Gaussian image noise – though other likelihood functions

can be arrived at with similarly reasonable assumptions.  (See Weiss and Fleet 2002),

Up until this point, there is nothing new in what we are suggesting.  It is almost

completely a recapitulation of Weiss, Simoncelli, and Adelson 2002 – a paper which uses

a model of Bayesian motion estimation to explain a number of puzzling human

perceptual illusions.  The novel part here is the one-point-one-motion constraint and the

use of Markov Random Fields to propagate information across space.

Results:

Well of course I’m nothing close to being finished – probably not even half way to

finished, but I’ll describe what I’ve done so far.

The first step was generating the TRMD movies, and other simple motion stimuli to

test algorithms on.  Dots are placed uniformly and randomly in a circular aperture.  Each

dot is a small Gaussian blob with a peak at full range of the intensity scale.  To prevent

the motion from being jerky or having irregular ‘shimmering’ it is necessary to store dot

locations at a 10x subpixel resolution.  Displacements between frames are kept small

enough that the I don’t have to confront the correspondence problem or motion aliasing –

the corresponding dot in the next frame is much closer than other dots.  Ultimately it

turned out that the best way to compute frames was to: (1) track dot locations as real

numbers, (2) create an upsample matrix of zeros, (3) place ones (effectively delta

functions) in the correct locations by rounding the real values, (4) convolve this sparse



matrix with a Gaussian kernel in x and y, (5) subsample back down to pixels, and then (6)

finally renormalize.  Other methods I tried were either vastly slower, produced motion

shimmer, or had weird boundary effects if dots were randomly placed too close together.

Using this method I have produced TRMD movies containing two and three motions.

I have also produced movies with a single constant motion, a single motion that changed

over time (spirals, jerks, and acceleration), and other motion displays such as drifting

Gaussian bands which allowed be to explore susceptibility to the aperture problem.

The next major step has been to re-implement what others have done to generate

Bayesian estimates of local motion.  This has proven to be surprisingly computationally

taxing – particularly in terms of storage.  At this point I have debugged implementation

of all the calculations described above up to the point of embedding them in the Markov

Random Field.

A few notes on design decisions.  I chose the sizes of the receptive fields such that

they tend to contain 0, 1, occasionally 2, and only very rarely 3 dots.  This decision will

have a huge impact on how well my implementation ultimately works.  I suspect that this

parameter will need to be tuned carefully later in the process.  I chose the size of the

micro neighborhoods in the calculation of the likelihood function to be about the size of

the dots so that they almost always contained at most one part of one dot.  This is

necessary if we are to meet the assumption that there is strictly one smooth motion within

each micro neighborhood – which allowed us to write the likelihood in that form.   The

size of the image noise term was chosen arbitrarily and changing it does not seem to

affect performance.  I suspect this is because the synthetic images I’m are essentially

noiseless.  I’m planning on adding image noise in the future, and hope nothing breaks.

The width of the Gaussian prior for slow motions was chosen to have a width comprable

to the variance of the image velocities – is seems that it could be argued that this should

be the optimal choice of prior which would naturally arise from long integrated

experience in a world with my chose artificial image statistics.  Also I chose to build in a

characteristic scale rather than construct a full image pyramid – the computations are



slow as it is.  Instead, to compute derivatives I used precomputed filter taps derivatives of

derivatives of Gaussians, which seems to work well.  Results are shown in Fig 3.

Figure 3

Next steps:

The next broad goal is obviously for me to marry these units in a Markov Random

Field.  But first I’ve been experimenting with just two nodes and compatibility functions

relating the two of them.  The aim is to identify the class of compatibility functions which

allows units with unambiguous image views to propagate information to regions with
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ambiguous information, and induce those notes to split their representation between

disparities.

In particular what I plan on doing is using a unit with only one dot [e.g. Fig 3B] in its

receptive field as an inducer node.  Using messages passed by this node, I would like a

node with two dots [e.g. Fig 3C] to re-evaluate its evidence as being most consistent with

two planes of motion, one consistent with the inducer, and another in a different disparity

plane.  For testing purposes I’m trying to do this without feedback from the ambiguous

node onto the inducer.  I’ve tried a few things at this point, one of which almost works,

but it’ll take some more playing to really see.

The next miniature experiment would be to consider what compatibility function

would allow a now disparity separated two dot node, to induce a matching disparity in

our original inducer.  My hope is that by conceptually breaking the problem down into

these two distinct processes, I can sidestep a lot of the confusing and counterintuitive

pitfalls of recurrent feedback.

If this approach fails to yield compelling results, there are a number of ready backup

plans.  One plan which we could fall back on, would be to directly use spectral analysis

combined with k-means to clustering, or other similar analysis to segment the velocity

measures.  Another possibility I might consider would be to try using some form of

anisotropic diffusion in velocity space, but that would require a lot of additional thought.

Summary:

The main thrust of the work so far has been first in implementing and understanding

Bayesian motion estimation in a local field, and second in arriving at a plausible direction

to take the algorithm in terms of segmenting the scene.  The first step in segmenting must

be to generate meaningful tokens, and we have done that.
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