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Abstract: We present a practical approach to nonparametric cluster analysis of large data sets. The number of clusters and the cluster
centres are automatically derived by mode seeking with the mean shift procedure on a reduced set of points randomly selected from the
data. The cluster boundaries are delineated using a k-nearest neighbour technique. The proposed algorithm is stable and efficient, a 10,000
point data set being decomposed in only a few seconds. Complex clustering examples and applications are discussed, and convergence of
the gradient ascent mean shift procedure is demonstrated for arbitrary distribution and cardinality of the data.
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1. INTRODUCTION

In image understanding, the feature spaces derived from real
data most often have a complex structure and a priori
information to guide the analysis may not be available. The
significant featurs whose recovery is necessary for the sol-
ution of a task correspond to clusters in this space. The
number of clusters, their shape and rules of assignment have
to be discerned solely from the given data.

The feature space can be regarded as a sample drawn
from an unknown probability distribution. Representing this
distribution with a parametric model (e.g. Gaussian mixture)
will introduce severe artifacts, since then the shape of
the delineated clusters is predefined. Nonparametric cluster
analysis, on the other hand, uses the modes of the underlying
probability density to define the cluster centres and the
valleys in the density to define the boundaries separating
the clusters.

To estimate the probability density, several nonparametric
techniques are available: multivariate histogram, the nearest
neighbour method and kernel estimation [1–4]. For higher
dimensional feature spaces, multivariate histograms are less
useful due to their exponentially growing number of bins
with the space dimension, as well as due to the artifacts
introduced by the quantisation. The nearest neighbour
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method is prone to local noise (which makes the accurate
detection of the modes difficult), and the estimate obtained
is not a probability density, since it integrates to infinity
[3, p. 96]. For low to medium data sizes, kernel estimation
is a good practical choice: it is simple, and for kernels
obeying mild conditions the estimate is asymptotically
unbiased, consistent in a mean-square sense, and uniformly
consisted in probability.

Kernel estimation based clustering essentially relies on
two techniques. In the first technique, the underlying density
is estimated and a hierarchical data structure is derived,
based on which the data is decomposed. An example is the
graph theoretical approach [1, p. 539]. In the second tech-
nique, density gradient estimation [5] is used, the modes
being detected with the hill climbing mean shift procedure
[6].

Both the density and the density gradient estimation
require the search for the data points falling in the neigh-
bourhood delineated by the employed kernel. This task is
called multidimensional range searching [7, p. 373]. However,
unlike the nearest neighbour search which can be performed
in logarithmic time [8,9], the performance of the multidi-
mensional range searching is difficult to predict for a parti-
cular data set [7, p. 385]. Therefore, for applications involv-
ing large data sets (e.g. multispectral image segmentation
[10], image restoration, speech and image coding), both the
kernel estimation and density gradient estimation become
computationally expensive, their complexity being pro-
portional to the square of the number of data points. The
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attempt to reduce computations by subsampling the data
leads to inaccuracy, most notably in the tails [11].

As a solution to the problem described above, this paper
presents a practical algorithm for unsupervised nonparametric
clustering of large data sets. The algorithm is based on the
mean shift procedure, being simple, efficient and easy to
implement. In section 2 the principles behind the kernel
density and the density gradient estimation are reviewed.
The specific clustering techniques are discussed in section
3, and the convergence of the mean shift procedure is
proved in section 4. The proposed algorithm is presented
in section 5, with experimental results shown in section 6.

2. DENSITY AND DENSITY GRADIENT
ESTIMATION

Let {Xi}i=1%n be an arbitrary set of n points in the d-
dimensional Euclidean space Rd. The multivariate kernel den-
sity estimate obtained with kernel K(x) and window radius
h, computed in the point x is defined as [3, p. 76]

f̂(x) =
1

nhd On

i=1

K Sx 2 Xi

h D (1)

The kernel K(x) is a scalar function which must satisfy the
following conditions [5]

sup
xPRd

uK(x)u , `, E
Rd

uK(x)u-x , `,

lim
ixi→`

ixiK(x) = 0, E
Rd

K(x)-x = 1 (2)

where i·i is the Euclidean norm. For optimum performance,
the window radius h has to be a function of the sample size
n. Asymptotic unbiasedness, mean-square consistency and
uniform consistency in probability of the density estimate are
assured if the following conditions are satisfied, respectively

lim
n→`

h(n) = 0, lim
n→`

nhd(n) = `, lim
n→`

nh2d(n) = ` (3)

The optimum kernel yielding minimum Mean Integrated
Square Error (MISE) is the Epanechnikov kernel

KE(x) = H. c−1
d (d + 2) (1 2 xTx) if xTx , 1

0 otherwise
(4)

where cd is the volume of the unit d-dimensional sphere [3,
p. 76]. Uniform and Gausian kernels are also frequently
used. Note that a fast computation of Eq. (1) requires a
fast multidimensional range search around x.

The use of a differentiable kernel allows us to define the
estimate of the density gradient as the gradient of the kernel
density estimate [1]

=̂f(x) ; =f̂(x) =
1

nhd On

i=1

=K Sx 2 Xi

h D (5)

Conditions on the kernel K(x) and the window radius h to

guarantee asymptotic unbiasedness, mean-square consistency
and uniform consistency are derived in Fukunaga and Hos-
tetler [5].

For the Epanechnikov kernel (4), the density gradient
estimate (5) becomes

=̂f(x) =
1

n(hdcd)
d + 2

h2 O
XiPSh(x)

[Xi 2 x]

=
nx

n(hdcd)
d + 2

h2 S 1
nx

O
XiPSh(x)

[Xi 2 x]D (6)

where the region Sh(x) is a hypersphere of radius h having
the volume hdcd, centred on x, and containing nx data
points. The last term in Eq. (6)

Mh(x) ;
1
nx

O
XiPSh(x)

[Xi 2 x]

=
1
nx

O
XiPSh(x)

Xi 2 x (7)

is called the sample mean shift. Using a kernel different
from the Epanechnikov kernel results in a weighted mean
computation in Eq. (7). Note again that efficient mean shift
computation requires efficient range searching.

The quantity nx/(n(hdcd)) is the kernel density estimate
f̂(x) computed with hypersphere Sh(x) (the uniform kernel),
and thus we can write Eq. (6) as

=̂f(x) = f̂(x)
d + 2

h2 Mh(x) (8)

which yields

Mh(x) =
h2

d + 2
=̂f(x)
f̂(x)

(9)

Expression (9) was first derived by Fukunaga and Hostetler
[5], and shows that an estimate of the normalised gradient
can be obtained by computing the sample mean shift in a
uniform kernel centred on x. The mean shift vector has
the direction of the gradient density estimate at x when
this estimate is obtained with the Epanechnikov kernel.
Therefore, the Epanechnikov kernel is also called the shadow
of the uniform kernel [6].

Since the mean shift vector always points towards the
direction of the maximum increase in the density, it can
define a path leading to a local density maximum, i.e. to a
mode of the density. The normalised gradient in Eq. (9)
introduces a desirable adaptive behaviour: the mean shift
step is large for low density regions corresponding to valleys,
and descreased as x approaches a mode.

3. DISTRIBUTION FREE CLUSTERING

Associated with the two estimates (the density and its
gradient) there are two basic algorithms of nonparametric
clustering. For a given window radius h, both algorithms
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automatically detect the number of existing clusters and
their corresponding boundaries.

Using the density estimate (1), a hierarchical structure of
the data can be obtained as follows. For each point xi,
search its neighbourhood for a parent Xj, for which the
quantity [f̂(Xj) 2 f̂(Xi)] · iXj 2 Xii21 is positive and
maximum, i.e. Xj is the steepest uphill from Xi. If the above
quantity is negative for all Xj in the neighbourhood, Xi is
declared to be a root node of the tree structure. Root nodes
are assumed to be close to a mode of the underlying
distribution. Clustering is performed in a natural way by
following the branches of the structure. The algorithm,
called graph theoretical clustering, is described in detail in
Fukunaga [1, p. 538]. The hierarchical structure can also be
obtained through iterative thresholding [12] or through split-
ting [13] of the density estimate.

The second algorithm uses the density gradient estimate
to define an iterative, hill climbing technique which detects
the modes and valleys in the underlying distribution. The
mean shift procedure is an adaptive steepest ascent technique
which computes the mean shift vector [7] for each data
point, translates the kernel by that amount, and repeats the
computations until a mode is reached. Generalisations of
the mean shift procedure and applications to clustering are
discussed in Cheng [6]. A variant of the mean shift, called
maximum entropy clustering, is presented by Rose et al.
[14], and face tracking based on mean shift is described by
Bradski [15].

However, clustering through applying the mean shift pro-
cedure to each data point cannot be satisfactory in practical
applications, since the convergence over the low density
regions is poor, while high density regions can present
plateaus without a clear local maximum.

When the data set is large (over 10,000 points), the most
important drawback of the two algorithms discussed above
is their computational complexity. They require the density
or density gradient estimation at each data point which has
a complexity of O(n2) for a set of n data points. The
complexity problem is induced by the lack of efficiency of
the multidimensional range searching. The performance of
the d-dimensional trees used in range searching is quite
difficult to predict for random data [7, p. 385].

In section 5 we present a probabilistic mean shift type
algorithm, which takes in account the difficulties mentioned
so far, and whose complexity is O(mn), with m ¿ n.

4. MEAN SHIFT CONVERGENCE

In this section, we prove that the mean shift procedure
applied to discrete data is guaranteed to converge. Let {Yk}k=

1,2,% denote the sequence of successive locations of the
mean shift procedure. By definition, we have for each k =
1, 2, %

Yk+1 =
1
nk

O
XiPSh(Yk)

Xi (10)

where Y1 is the centre of the initial window and nk is the
number of points falling in the window Sh(Yk) centred on Yk.

The convergence of the mean shift has been justified as
a consequence of relation (9), (see Cheng [6]). However,
while it is true that the mean shift vector Mh(x) has the
direction of the gradient density estimate at x, it is not
apparent that the density estimate at locations {Yk}k=1,2% is
a monotonic increasing sequence. Moving in the direction
of the gradient guarantees hill climbing only for infinitesimal
steps. The following theorem, however, asserts the conver-
gence.

Theorem 1. Let f̂E = {f̂k(Yk, KE)}k=1,2,% be the sequence of
density estimates obtained using Epanechnikov kernel and
computed in the points {Yk}k=1,2% defined by the successive
locations of the mean shift procedure with uniform kernel.
The sequence is convergent.

Proof: Since the data set {Xi}i=1%n has finite cardinality n,
the sequence f̂E is bounded. It is shown in the appendix
that f̂E is strictly monotonic increasing, i.e. if Yk ± Yk+1

then f̂E(k) , f̂E(k+1), for all k = 1, 2, %. Being bounded
and strictly monotonic increasing, the sequence f̂E is conver-
gent. Note that if Yk = Yk+1, then Yk is the limit of f̂E, i.e.
Yk is the fixed point of the mean shift procedure.

5. CLUSTERING ALGORITHM

The steps of the algorithm are described below.
1. Define a random tessellation of the space with m ¿ n

spheres Sh(x). To reduce the computational load, a set of m
points X1 % Xm called the sample set is randomly selected
from the data. Two constraints are imposed on the points
retained in the sample set. The distance between any two
neighbours should not be smaller than h, the radius of the
sphere Sh(x), and the sample points should not lie in sparsely
populated regions. The latter condition is required to avoid
low density clusters. A region is sparsely populated whenever
the number of points inside the sphere is below a threshold
T1. The distance and density constraints automatically deter-
mine the size m of the sample set. The spheres centred on
the sample set cover most of the data points. When the
processing time is not critical, the distance constraint can
be relaxed, thus increasing the tessellation resolution.

2. Apply the mean shift procedure to the sample set. A set
containing m cluster centre candidates is defined by the points
of convergence of the m mean shift procedures. Note the
decrease in computational complexity which is now O(mn),
with m ¿ n, and that the computation of the mean shift
vectors is based almost on the entire data set. Therefore,
the quality of the density gradient estimate is not diminished
by the use of sampling.

3. Perturb the cluster centre candidates and reapply the mean
shift procedure. Since a local plateau can prematurely stop
the iterations, each cluster centre candidate is perturbed by
a random vector of small norm, and the mean shift pro-
cedure is let to converge again.

4. Derive the cluster centres Y1 % Yp from the cluster centre
candidates. Any subset of cluster centre candidates which
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are sufficiently close to each other (for any given point in
the subset there is at least another point in the subset such
that their distance is less than h), defines a cluster centre. The
cluster centre is the mean of the cluster centre candidates in
the subset. Note that p < m.

5. Validate the cluster centres. Between any two cluster
centres Yi and Yj a significant valley should occur in the
underlying density. The existence of the valley is tested for
each pair (Yi, Yj). The sphere Sh(x) is moved with step h
along the line defined by (Yi, Yj), and the weighted number
the data points lying in the sphere is counted at each
position, i.e. the density is estimated with Epanechnikov
kernel KE along the line. Whenever the ratio between
min[f̂(Xi), f̂(Xj)] and the minimum density along the line
is larger than a threshold T2, a valley is assumed between
Yi and Yj. If no valley was found between Yi and Yj, the
cluster centre of lower density (Yi or Yj) is removed from
the set of cluster centres.

6. Delineate the clusters. At this stage, each sample point
is associated with a cluster centre. To allocate the data
points a k-nearest neighbour technique is employed, i.e. each
data point belongs to the cluster defined by the majority of
its k-nearest sample points.

Fig. 1. First experiment. (a) Original data set (32,640 points); (b) cluster delineation (three clusters represented with different grey levels);
(c) sample set (167 points); (d) cluster centre candidates.

6. PERFORMANCE EVALUATION

The clustering algorithm makes use of three parameters: the
searching sphere radius h which controls the sensitivity of
the decomposition, the threshold T1, which imposes the
density constraint, and the threshold T2, corresponding to
the minimum acceptable peak-valley ratio. The parameters
T1 and T2 generally have a weak influence on the result.
All the experimental results described here were obtained
with T1 = 50 and T2 = 1.2. Unless it is specified otherwise,
we used k = 1, i.e. clusters were delineated using the nearest
neighbour for the last step of the algorithm. Since the
experimental data sets had different scales, the sphere radius
h has been changed accordingly. Note also that the
Improved Absolute Error Inequality [16] was employed to
efficiently compute Euclidean distances.

Experiment 1

The first example is shown in Fig. 1. The data set contained
32,640 points with dimension d = 3, grouped into three
non-linearly separable clusters (Fig. 1(a)). A standard
unsupervised procedure such as ISODATA [17] would fail
on this data. Using a radius h = 0.2, the sample set obtained
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Fig. 2. Second experiment. (a) Original data set (10,000 points); (b) cluster delineation (two clusters).

had 167 points (Fig. 1(c)) and converged to three cluster
centres. In Fig. 1(b), the three extracted clusters are shown,
having 11,050, 10,874 and 10,716 points, respectively. The
algorithm running time was less than 10 seconds on a
standard workstation.

Experiment 2

A simpler clustering example is shown in Fig. 2. The purpose
of this experiment was to compare the performance of the
nonparametric algorithm with the performance of the classical
Bayes classifier. The data set contained 10,000 points with
dimension d = 3 coming from two normal distributions with
covariance 102I and mean vector (0, 0, 0)T and (40, 0,
0)T, respectively.

Figure 2(b) shows the delineated clusters corresponding
to a radius h = 10. Using the Bayes classifier the error rate
is 2.34%, due to 234 points that overlap. Figure 3 shows
the error rate resulted from our algorithm for sphere radii
between 8 and 20. The allocation of data points to the
modes used k-nearest neighbours, where k was taken as 1
and 3, respectively. The error rate increases with radius h
due to the increase in the boundary delineation error. The
straight line in the graph represents the Bayes error rate.
The performance of the nonparametric algorithm is very

Fig. 3. The error rate of the proposed algorithm for different values
of the sphere radius and different number of nearest neighbours.
The dash-dotted line represents the error rate of the Bayes classifier.

Fig. 4. Third experiment. (a) Original image; (b) segmented image
using nonparametric clustering.

close to that of the Bayes classifier, in spite of a no a priori
knowledge being used in the nonparametric case.

Experiment 3

The third experiment shows the application of the new
algorithm to the segmentation of the colour image in Fig.
4(a). Clustering is performed in the perceptually uniform
L*u*v* colour space, each delineated cluster corresponding
to homogeneous regions in the image. The colour space
(Fig. 5(a)) contained 14,826 points, and four clusters have
been extracted by using a radius of h = 10. Note the irregular
boundaries of the clusters in Fig. 5(b). The clustering quality
can be assessed by observing the segmented image in Fig.
4(b), where spatial constraints have been used to remove
small regions containing less than 25 pixels [10].

We tested the stability of the algorithm by using different
sets of sample points, each set resulting in a distinct tessel-
lation of the input space. Four values of the window radius
h have been considered: 4, 7, 16 and 22. Ten trials have
been performed for each window radius. The algorithm
proved to be very stable producing similar mode locations
and cluster delineations for a given radius value. Table 1
shows the number of detected clusters corresponding to each
radius class.
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Fig. 5. Third experiment. (a) Original data set (14,826 colour points); (b) cluster delineation (four clusters). The position of each cluster
has been shifted to show the delineation.

Table 1. Number of detected clusters versus the sphere radius
for Experiment 3

Detected clusters 5 4 4 3

Sphere radius 4 7 16 22

Experiment 4

A second colour segumentation example is presented in Fig.
6. Using the same radius of h = 10, the algorithm extracted
three colour clusters.

Experiment 5

A difficult data set is shown in Fig. 7(a). it contains 17,748
points and represents the first two components of the L*u*
v* space of the colour image in Fig. 8(a). We used only
this subspace to be able to visualise the behaviour of the
algorithm. Large amounts of background noise, asymmetric
clusters, narrow peaks and large plateaus are present. Real
data often have such a complex structure.

Using a radius of h = 5, the proposed algorithm detected
seven clusters (Fig. 7(b)). The 47 sample points are shown
in Fig. 7(c), together with the Epanechnikov estimate of

Fig. 6. Fourth experiment. (a) Original image; (b) segmented image using nonparametric clustering.

the density. The estimate was computed with a resolution
of one on both axes and using the same window radius of
h = 5. The sample points converged to the cluster centre
candidates (Fig. 7(d)) located at the local maxima of the
density estimate. The valley test further removed some of
the cluster centre candidates located on plateaus, allowing
the correct cluster delineation.

The decomposition in Fig. 7b does not have a physical
meaning, since it is based only on two dimensions. However,
when the colour image is processed in the full (3-
dimensional) colour space the obtained segmentation is satis-
factory (see Fig. 8(b)).

7. DISCUSSION

Under general conditions, the use of the algorithm has to
be preceded by an application-dependent preprocessing stage
to normalise the data. When no a priori information is
available, the optimal window radius can be obtained as the
centre of the largest operating range, which yields the same
number of clusters for a given data [1, p. 541]. In practice,
however, the final objective of the decomposition is task
dependent, therefore, top-down information controls the
window radius.

The new algorithm has been applied with excellent results
to the task of real-time segmentation of medical images
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Fig. 7. Fifth experiment. (a) Original data set (17,748 2D points); (b) data decomposition (seven clusters). The position of each cluster has
been shifted to show the delineation; (c) sample set (47 points) and the Epanechnikov density estimate; (d) cluster centre candidates.

Fig. 8. The colour image used in the fifth experiment. (a) Original; (b) segmented.

in a retrieval system for diagnostic pathology [18]. The
nonparametric nature of the algorithm and its robustness to
noise allowed the use of a fixed radius for the processing of
hundreds of digital specimens captured under different con-
ditions.

Despite the expected difficulty given the reduced number

of data points, the proposed algorithm showed good perform-
ance for the standard IRIS data, which contains 150 points.
Using a window radius of 4, letting all the individual points
seek the closest mode, and delineating the clusters based
on the three nearest neighbours, the correct number of
three clusters were detected. Only seven points were mis-



29Distribution Free Decomposition of Multivariate Data

classified, a result which is superior to that of seven other
clustering algorithms compared by Bajcsy and Ahuja [19].
When the cluster delineation was based on the nearest
neighbour, the number of misclassified points increased to
eight.
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APPENDIX

In this section, we will show that the sequence f̂E = {f̂k(Yk,
KE)k=1,2% is strictly monotonic increasing, i.e. if Yk ± Yk+1,
then f̂E(k) , f̂E(k + 1), for all k = 1, 2, %.

Let nk, n9
k and n0

k with nk = n9
k + n0

k be the number of data
points falling in the d-dimensional windows (see Fig. 9).

Sh(Yk), S9
h(Yk) = Sh(Yk) 2 S0

h(Yk)
and S0

h(Yk) = Sh(Yk) > Sh(Yk+1)

Without loss of generality, we can assume the origin
located at Yk. Using the definition of the density estimate
(1) with the Epanechnikov kernel (4), and noting that iYk

2 Xii2 = iXii2, we have

Fig. 9. d-dimensional windows used in the proof of convergence:
Sh(Yk), S9

h(Yk) = Sh(Yk) 2 S0
h (Yk) and S0

h(Yk) = Sh(Yk) > Sh(Yk+1).
The point Yk+1 is the mean of the data points falling in Sh(Yk).
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f̂E(k) = f̂k(Yk, KE) =
1

nhd O
XiPSh(Yk)

KE SYk 2 Xi

h D
=

d + 2
2n(hdcd)

O
XiPSh(Yk)

S1 2
iXii2

h2 D (A1)

Since the kernel KE is nonnegative, we also have

f̂E(k 1 1) 5 f̂k11 (Yk11, KE)

$
1

nhd O
XiPS0

h(Yk)

KE SYk11 2 Xi

h D (A2)

5
d 1 2

2n(hdcd)
O

XiPS0
h(Yk)

S1 2
iYk11 2 Xii2

h2 D
Hence, knowing that n9

k = nk 2 n0
k, we obtain

f̂E(k + 1) 2 f̂E(k) $
d + 2

2n(hdcd)h2

F O
XiPSh(Yk)

iXii2 2 O
XiPS0

h(Yk)

iYk+1 2 Xii2 2 n9
kh2G (A3)

where the last term appears due to the different sum-
mation boundaries.

Also, by definition iYk+1 2 X
i
i2 $ h2 for all Xi P S9

h(Yk),
which implies that

O
XiPS9

h(Yk)

iYk+1 2 Xii2 $ n9
kh2 (A4)

Finally, employing Eq. (A4) in Eq. (A3), and using Eq.
(10), we obtain

f̂E(k + 1) 2 f̂E(k)

$
d + 2

2n(hdcd)h2 F O
XiPSh(Yk)

iXki2 2 O
XiPSh(Yk)

iYk+1 2 Xii2G
=

d + 2
2n(hdcd)h2 F2YT

k+1 O
XiPSh(Yk)

Xi 2 nk iYk+1i2G (A5)

=
d + 2

2n(hdcd)h2 nk iYk+1i2

The last item of the relation (A5) is strictly positive,
except when Yk = Yk+1 = 0.


