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Abstract

We propose a flexible new technique to easily calibrate
a camera. It only requires the camera to observe a planar
pattern shown at a few (at least two) different orientations.
Either the camera or the planar pattern can be freely moved.
The motion need not be known. Radial lens distortion is
modeled. The proposed procedure consists of a closed-form
solution, followed by a nonlinear refinement based on the
maximum likelihood criterion. Both computer simulation
and real data have been used to test the proposed technique,
and very good results have been obtained. Compared with
classical techniques which use expensive equipment such as
two or three orthogonal planes, the proposed technique is
easy to use and flexible. It advances 3D computer vision
one step from laboratory environments to real world use.
The corresponding software is available from the author’s
Web page.

Keywords: Camera Calibration, Intrinsic Parameters, Lens Distortion,

Flexible Plane-Based Calibration, Motion Analysis, Model Acquisition.

1. Motivations

Camera calibration is a necessary step in 3D computer
vision in order to extract metric information from 2D images.
Much work has been done, starting in the photogrammetry
community (see [2, 4] to cite a few), and more recently in
computer vision ([9, 8, 20, 7, 23, 21, 15, 6, 19] to cite a
few). We can classify those techniques roughly into two
categories:
Photogrammetric calibration. Calibration is performed
by observing a calibration object whose geometry in 3-D
space is known with very good precision. Calibration can
be done very efficiently [5]. The calibration object usually
consists of two or three planes orthogonal to each other.
Sometimes, a plane undergoing a precisely known transla-
tion is also used [20]. These approaches require an expensive
calibration apparatus, and an elaborate setup.
Self-calibration. Techniques in this category do not use
any calibration object. Just by moving a camera in a static
scene, the rigidity of the scene provides in general two
constraints [15] on the cameras’ internal parameters from
one camera displacement by using image information alone.

Therefore, if images are taken by the same camera with fixed
internal parameters, correspondences between three images
are sufficient to recover both the internal and external pa-
rameters which allow us to reconstruct 3-D structure up to
a similarity [14, 12]. While this approach is very flexible, it
is not yet mature [1]. Because there are many parameters to
estimate, we cannot always obtain reliable results.

Other techniques exist: vanishing points for orthogonal
directions [3, 13], and calibration from pure rotation [10, 18].

Our current research is focused on a desktop vision sys-
tem (DVS) since the potential for using DVSs is large. Cam-
eras are becoming cheap and ubiquitous. A DVS aims at the
general public, who are not experts in computer vision. A
typical computer user will perform vision tasks only from
time to time, so will not be willing to invest money for ex-
pensive equipment. Therefore, flexibility, robustness and
low cost are important. The camera calibration technique
described in this paper was developed with these considera-
tions in mind.

The proposed technique only requires the camera to ob-
serve a planar pattern shown at a few (at least two) different
orientations. The pattern can be printed on a laser printer
and attached to a “reasonable” planar surface (e.g., a hard
book cover). Either the camera or the planar pattern can
be moved by hand. The motion need not be known. The
proposed approach lies between the photogrammetric cali-
bration and self-calibration, because we use 2D metric infor-
mation rather than 3D or purely implicit one. Both computer
simulation and real data have been used to test the proposed
technique, and very good results have been obtained. Com-
pared with classical techniques, the proposed technique is
considerably more flexible. Compared with self-calibration,
it gains considerable degree of robustness. We believe the
new technique advances 3D computer vision one step from
laboratory environments to the real world.

Note that Bill Triggs [19] recently developed a self-
calibration technique from at least 5 views of a planar scene.
His technique is more flexible than ours, but has difficulty to
initialize. Liebowitz and Zisserman [13] described a tech-
nique of metric rectification for perspective images of planes
using metric information such as a known angle, two equal
though unknown angles, and a known length ratio. They also
mentioned that calibration of the internal camera parame-
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ters is possible provided such metrically rectified planes,
although no algorithm or experimental results were shown.

The paper is organized as follows. Section 2 describes the
basic constraints from observing a single plane. Section 3
describes the calibration procedure. We start with a closed-
form solution, followed by nonlinear optimization. Radial
lens distortion is also modeled. Section 4 studies configura-
tions in which the proposed calibration technique fails. It is
very easy to avoid such situations in practice. Section 5 pro-
vides the experimental results. Both computer simulation
and real data are used to validate the proposed technique. In
the Appendix, we provides a number of details, including
the techniques for estimating the homography between the
model plane and its image.

2. Basic Equations

We examine the constraints on the camera’s intrinsic pa-
rameters provided by observing a single plane. We start with
the notation used in this paper.

2.1. Notation

A 2D point is denoted by m = [u, v]T . A 3D point
is denoted by M = [X, Y, Z]T . We use x̃ to denote the
augmented vector by adding 1 as the last element: m̃ =
[u, v, 1]T and M̃ = [X, Y, Z, 1]T . A camera is modeled by
the usual pinhole: the relationship between a 3D point M and
its image projection m is given by

sm̃ = A
[
R t

]
M̃ with A =


α c u0

0 β v0
0 0 1


 (1)

where s is an arbitrary scale factor; (R, t), called the extrin-
sic parameters, is the rotation and translation which relates
the world coordinate system to the camera coordinate sys-
tem; A is called the camera intrinsic matrix, and (u0, v0)
are the coordinates of the principal point, α and β the scale
factors in image u and v axes, and c the parameter describing
the skewness of the two image axes.

We use the abbreviation A−T for (A−1)T or (AT )−1.

2.2. Homography between the model plane and its image

Without loss of generality, we assume the model plane is
on Z = 0 of the world coordinate system. Let’s denote the
ith column of the rotation matrix R by ri. From (1), we have

s


u

v
1


 = A

[
r1 r2 r3 t

]



X
Y
0
1


 = A

[
r1 r2 t

] 
X

Y
1




By abuse of notation, we still use M to denote a point on the
model plane, but M = [X, Y ]T since Z is always equal to 0.

In turn, M̃ = [X, Y, 1]T . Therefore, a model point M and its
image m is related by a homography H:

sm̃ = HM̃ with H = A
[
r1 r2 t

]
. (2)

As is clear, the 3×3 matrix H is defined up to a scale factor.

2.3. Constraints on the intrinsic parameters

Given an image of the model plane, an homography can
be estimated (see Appendix A). Let’s denote it by H =[
h1 h2 h3

]
. From (2), we have[

h1 h2 h3
]

= λA
[
r1 r2 t

]
,

where λ is an arbitrary scalar. Using the knowledge that r1
and r2 are orthonormal, we have

hT
1 A−T A−1h2 = 0 (3)

hT
1 A−T A−1h1 = hT

2 A−T A−1h2 . (4)

These are the two basic constraints on the intrinsic param-
eters, given one homography. Because a homography has
8 degrees of freedom and there are 6 extrinsic parameters
(3 for rotation and 3 for translation), we can only obtain 2
constraints on the intrinsic parameters.

3. Solving Camera Calibration

This section provides the details how to effectively solve
the camera calibration problem. We start with an analyti-
cal solution, followed by a nonlinear optimization technique
based on the maximum likelihood criterion. Finally, we take
into account lens distortion, giving both analytical and non-
linear solutions.

3.1. Closed-form solution

Let

B = A−T A−1 ≡

B11 B12 B13

B12 B22 B23
B13 B23 B33




=




1
α2 − c

α2β
cv0−u0β

α2β

− c
α2β

c2

α2β2 + 1
β2 − c(cv0−u0β)

α2β2 − v0
β2

cv0−u0β
α2β − c(cv0−u0β)

α2β2 − v0
β2

(cv0−u0β)2

α2β2 + v2
0

β2 +1


 .

(5)

Note that B is symmetric, defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (6)

(It actually describes the image of the absolute conic.)
Let the ith column vector of H be hi = [hi1, hi2, hi3]T .

Then, we have

hT
i Bhj = vT

ijb (7)
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with vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2,

hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]T .

Therefore, the two fundamental constraints (3) and (4), from
a given homography, can be rewritten as 2 homogeneous
equations in b: [

vT
12

(v11 − v22)T

]
b = 0 . (8)

If n images of the model plane are observed, by stacking
n such equations as (8) we have

Vb = 0 , (9)

where V is a 2n × 6 matrix. If n ≥ 3, we will have in
general a unique solution b defined up to a scale factor.
If n = 2, we can impose the skewless constraint c = 0,
i.e., [0, 1, 0, 0, 0, 0]b = 0, which is added as an additional
equation to (9). The solution to (9) is well known as the
eigenvector of VT V associated with the smallest eigenvalue
(equivalently, the right singular vector of V associated with
the smallest singular value).

Once b is estimated, we can compute the camera intrinsic
matrix A. See Appendix B for the details.

OnceA is known, the extrinsic parameters for each image
is readily computed. From (2), we have

r1=λA−1h1, r2=λA−1h2, r3=r1 × r2, t=λA−1h3

with λ = 1/‖A−1h1‖ = 1/‖A−1h2‖. Of course, because
of noise in data, the so-computed matrix R = [r1, r2, r3]
does not in general satisfy the properties of a rotation matrix.
Appendix C describes a method to estimate the best rotation
matrix from a general 3 × 3 matrix.

3.2. Maximum likelihood estimation

The above solution is obtained through minimizing an
algebraic distance which is not physically meaningful. We
can refine it through maximum likelihood inference.

We are given n images of a model plane and there are m
points on the model plane. Assume that the image points are
corrupted by independent and identically distributed noise.
The maximum likelihood estimate can be obtained by min-
imizing the following functional:

n∑
i=1

m∑
j=1

‖mij − m̂(A,Ri, ti, Mj)‖2 , (10)

where m̂(A,Ri, ti, Mj) is the projection of pointMj in image
i, according to equation (2). A rotation R is parameterized
by a vector of 3 parameters, denoted by r, which is par-
allel to the rotation axis and whose magnitude is equal to
the rotation angle. R and r are related by the Rodrigues

formula [5]. Minimizing (10) is a nonlinear minimization
problem, which is solved with the Levenberg-Marquardt Al-
gorithm as implemented in Minpack [16]. It requires an
initial guess of A, {Ri, ti|i = 1..n} which can be obtained
using the technique described in the previous subsection.

3.3. Dealing with radial distortion

Up to now, we have not considered lens distortion of a
camera. However, a desktop camera usually exhibits signif-
icant lens distortion, especially radial distortion. In this sec-
tion, we only consider the first two terms of radial distortion.
The reader is referred to [17, 2, 4, 23] for more elaborated
models. Based on the reports in the literature [2, 20, 22], it
is likely that the distortion function is totally dominated by
the radial components, and especially dominated by the first
term. It has also been found that any more elaborated mod-
eling not only would not help (negligible when compared
with sensor quantization), but also would cause numerical
instability [20, 22].

Let (u, v) be the ideal (nonobservable distortion-free)
pixel image coordinates, and (ŭ, v̆) the corresponding real
observed image coordinates. Similarly, (x, y) and (x̆, y̆) are
the ideal (distortion-free) and real (distorted) normalized im-
age coordinates. We have [2, 22]

x̆ = x + x[k1(x2 + y2) + k2(x2 + y2)2]

y̆ = y + y[k1(x2 + y2) + k2(x2 + y2)2] ,

where k1 and k2 are the coefficients of the radial distortion.
The center of the radial distortion is the same as the principal
point. From ŭ = u0 + αx̆ + cy̆ and v̆ = v0 + βy̆, we have

ŭ = u + (u − u0)[k1(x2 + y2) + k2(x2 + y2)2] (11)

v̆ = v + (v − v0)[k1(x2 + y2) + k2(x2 + y2)2] . (12)

Estimating Radial Distortion by Alternation. As the ra-
dial distortion is expected to be small, one would expect to
estimate the other five intrinsic parameters, using the tech-
nique described in Sect. 3.2, reasonable well by simply ig-
noring distortion. One strategy is then to estimate k1 and
k2 after having estimated the other parameters. Then, from
(11) and (12), we have two equations for each point in each
image:[

(u−u0)(x2+y2) (u−u0)(x2+y2)2

(v−v0)(x2+y2) (v−v0)(x2+y2)2

] [
k1
k2

]
=

[
ŭ−u
v̆−v

]
.

Given m points in n images, we can stack all equations
together to obtain in total 2mn equations, or in matrix form
as Dk = d, where k = [k1, k2]T . The linear least-squares
solution is given by

k = (DT D)−1DT d . (13)
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Once k1 and k2 are estimated, one can refine the estimate of
the other parameters by solving (10) with m̂(A,Ri, ti, Mj)
replaced by (11) and (12). We can alternate these two pro-
cedures until convergence.

Complete Maximum Likelihood Estimation. Experi-
mentally, we found the convergence of the above alterna-
tion technique is slow. A natural extension to (10) is then to
estimate the complete set of parameters by minimizing the
following functional:

n∑
i=1

m∑
j=1

‖mij − m̆(A, k1, k2,Ri, ti, Mj)‖2 , (14)

where m̆(A, k1, k2,Ri, ti, Mj) is the projection of point Mj

in image i according to equation (2), followed by distortion
according to (11) and (12). This is a nonlinear minimiza-
tion problem, which is solved with the Levenberg-Marquardt
Algorithm as implemented in Minpack [16]. A rotation is
again parameterized by a 3-vector r, as in Sect. 3.2. An ini-
tial guess of A and {Ri, ti|i = 1..n} can be obtained using
the technique described in Sect. 3.1 or in Sect. 3.2. An ini-
tial guess of k1 and k2 can be obtained with the technique
described in the last paragraph, or simply by setting them to
0.

3.4. Summary

The recommended calibration procedure is as follows:

1. Print a pattern and attach it to a planar surface;
2. Take a few images of the model plane under different

orientations by moving either the plane or the camera;
3. Detect the feature points in the images;
4. Estimate the five intrinsic parameters and all the ex-

trinsic parameters using the closed-form solution as de-
scribed in Sect. 3.1;

5. Estimate the coefficients of the radial distortion by solv-
ing the linear least-squares (13);

6. Refine all parameters by minimizing (14).

4. Degenerate Configurations

We study in this section configurations in which addi-
tional images do not provide more constraints on the camera
intrinsic parameters. Because (3) and (4) are derived from
the properties of the rotation matrix, if R2 is not independent
of R1, then image 2 does not provide additional constraints.
In particular, if a plane undergoes a pure translation, then
R2 = R1 and image 2 is not helpful for camera calibration.
In the following, we consider a more complex configuration.

Proposition 1. If the model plane at the second position is
parallel to its first position, then the second homography
does not provide additional constraints.
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Figure 1: Errors vs. the noise level of the image points

The proof is omitted due to space limitation, and is avail-
able from our technical report [24]. In practice, it is very
easy to avoid the degenerate configuration: we only need to
change the orientation of the model plane from one snapshot
to another.

5. Experimental Results

The proposed algorithm has been tested on both computer
simulated data and real data. The closed-form solution in-
volves finding a singular value decomposition of a small
2n × 6 matrix, where n is the number of images. The non-
linear refining within the Levenberg-Marquardt algorithm
takes 3 to 5 iterations to converge.

5.1. Computer Simulations

The simulated camera has the following property: α =
1250, β = 900, c = 1.09083 (equivalent to 89.95◦), u0 =
255, v0 = 255. The image resolution is 512 × 512. The
model plane is a checker pattern containing 10 × 14 = 140
corner points (so we usually have more data in the v direction
than in the u direction). The size of pattern is 18cm×25cm.
The orientation of the plane is represented by a 3D vector r,
which is parallel to the rotation axis and whose magnitude
is equal to the rotation angle. Its position is represented by
a 3D vector t (unit in centimeters).
Performance w.r.t. the noise level. In this experi-
ment, we use three planes with r1 = [20◦, 0, 0]T ,
t1 = [−9,−12.5, 500]T , r2 = [0, 20◦, 0]T , t2 =
[−9,−12.5, 510]T , r3 = 1√

5
[−30◦,−30◦,−15◦]T , t3 =

[−10.5,−12.5, 525]T . Gaussian noise with 0 mean and σ
standard deviation is added to the projected image points.
The estimated camera parameters are then compared with
the ground truth. We measure the relative error for α and
β, and absolute error for u0 and v0. We vary the noise level
from 0.1 pixels to 1.5 pixels. For each noise level, we per-
form 100 independent trials, and the results shown are the
average. As we can see from Fig. 1, errors increase linearly
with the noise level. (The error for c is not shown, but has
the same property.) For σ = 0.5 (which is larger than the
normal noise in practical calibration), the errors in α and β
are less than 0.3%, and the errors in u0 and v0 are around
1 pixel. The error in u0 is larger than that in v0. The main
reason is that there are less data in the u direction than in the
v direction, as we said before.
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Figure 2: Errors vs. the number of images of the model plane
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Figure 3: Errors vs. the angle of the model plane w.r.t. the
image plane

Performance w.r.t. the number of planes. This experi-
ment investigates the performance with respect to the num-
ber of planes (more precisely, the number of images of the
model plane). The orientation and position of the model
plane for the first three images are the same as in the last sub-
section. From the fourth image, we first randomly choose a
rotation axis in a uniform sphere, then apply a rotation angle
of 30◦. We vary the number of images from 2 to 16. For
each number, 100 trials of independent plane orientations
(except for the first three) and independent noise with mean
0 and standard deviation 0.5 pixels are conducted. The av-
erage result is shown in Fig. 2. The errors decrease when
more images are used. From 2 to 3, the errors decrease
significantly.
Performance w.r.t. the orientation of the model plane.
This experiment examines the influence of the orientation
of the model plane with respect to the image plane. Three
images are used. The orientation of the plane is chosen as
follows: the plane is initially parallel to the image plane; a
rotation axis is randomly chosen from a uniform sphere; the
plane is then rotated around that axis with angle θ. Gaussian
noise with mean 0 and standard deviation 0.5 pixels is added
to the projected image points. We repeat this process 100
times and compute the average errors. The angle θ varies
from 5◦ to 75◦, and the result is shown in Fig. 3. When
θ = 5◦, 40% of the trials failed because the planes are almost
parallel to each other (degenerate configuration), and the
result shown has excluded those trials. Best performance
seems to be achieved with an angle around 45◦. Note that
in practice, when the angle increases, foreshortening makes
the corner detection less precise, but this is not considered
in this experiment.

5.2. Real Data

The proposed technique is now routinely used in our vi-
sion group and also in the graphics group. Here, we provide

Figure 5: First and second images after having corrected
radial distortion

the result with one example.
The camera to be calibrated is an off-the-shelf PULNiX

CCD camera with 6 mm lens. The image resolution is
640×480. The model plane contains a pattern of 8 × 8
squares, so there are 256 corners. The size of the pattern
is 17cm×17cm. Five images of the plane under different
orientations were taken, as shown in Fig. 4. We can observe
a significant lens distortion in the images. The corners were
detected as the intersection of straight lines fitted to each
square.

We applied our calibration algorithm to the first 2, 3, 4
and all 5 images. The results are shown in Table 1. For each
configuration, three columns are given. The first column
(initial) is the estimation of the closed-form solution.
The second column (final) is the maximum likelihood es-
timation (MLE), and the third column (σ) is the estimated
standard deviation, representing the uncertainty of the final
result. As is clear, the closed-form solution is reasonable,
and the final estimates are very consistent with each other
whether we use 2, 3, 4 or 5 images. We also note that the un-
certainty of the final estimate decreases with the number of
images. The last row of Table 1, indicated by RMS, displays
the root of mean squared distances, in pixels, between de-
tected image points and projected ones. The MLE improves
considerably this measure.

The careful reader may remark the inconsistency for k1
and k2 between the closed-form solution and the MLE. The
reason is that for the closed-form solution, camera intrin-
sic parameters are estimated assuming no distortion, and the
predicted outer points lie closer to the image center than the
detected ones. The subsequent distortion estimation tries
to spread the outer points and increase the scale in order to
reduce the distances, although the distortion shape (with pos-
itive k1, called pincushion distortion) does not correspond
to the real distortion (with negative k1, called barrel dis-
tortion). The nonlinear refining (MLE) finally recovers the
correct distortion shape. The estimated distortion parame-
ters allow us to correct the distortion in the original images.
Figure 5 displays the first two such distortion-corrected im-
ages, which should be compared with the first two images
shown in Figure 4. We see clearly that the curved pattern in
the original images is straightened.

Variation of the calibration result. In Table 1, we have
shown the calibration results with 2 through 5 images, and
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Figure 4: Five images of a model plane, together with the extracted corners (indicated by cross, but too small to be observable)

Table 1: Results with real data of 2 through 5 images

nb 2 images 3 images 4 images 5 images
initial final σ initial final σ initial final σ initial final σ

α 825.59 830.47 4.74 917.65 830.80 2.06 876.62 831.81 1.56 877.16 832.50 1.41
β 825.26 830.24 4.85 920.53 830.69 2.10 876.22 831.82 1.55 876.80 832.53 1.38
c 0 0 0 2.2956 0.1676 0.109 0.0658 0.2867 0.095 0.1752 0.2045 0.078
u0 295.79 307.03 1.37 277.09 305.77 1.45 301.31 304.53 0.86 301.04 303.96 0.71
v0 217.69 206.55 0.93 223.36 206.42 1.00 220.06 206.79 0.78 220.41 206.56 0.66
k1 0.161 −0.227 0.006 0.128 −0.229 0.006 0.145 −0.229 0.005 0.136 −0.228 0.003
k2 −1.955 0.194 0.032 −1.986 0.196 0.034 −2.089 0.195 0.028 −2.042 0.190 0.025

RMS 0.761 0.295 0.987 0.393 0.927 0.361 0.881 0.335

Table 2: Variation of the calibration results among all quadruples of images

quadruple (1234) (1235) (1245) (1345) (2345) mean deviation
α 831.81 832.09 837.53 829.69 833.14 832.85 2.90
β 831.82 832.10 837.53 829.91 833.11 832.90 2.84
c 0.2867 0.1069 0.0611 0.1363 0.1096 0.1401 0.086
u0 304.53 304.32 304.57 303.95 303.53 304.18 0.44
v0 206.79 206.23 207.30 207.16 206.33 206.76 0.48
k1 −0.229 −0.228 −0.230 −0.227 −0.229 −0.229 0.001
k2 0.195 0.191 0.193 0.179 0.190 0.190 0.006

RMS 0.361 0.357 0.262 0.358 0.334 0.334 0.04

we have found that the results are very consistent with each
other. In order to further investigate the stability of the pro-
posed algorithm, we have applied it to all combinations of 4
images from the available 5 images. The results are shown
in Table 2, where the third column (1235), for example, dis-
plays the result with the quadruple of the first, second, third,
and fifth image. The last two columns display the mean and
sample deviation of the five sets of results. The sample devi-
ations for all parameters are quite small, which implies that
the proposed algorithm is quite stable. The value of the skew
parameter c is not significant from 0, since the coefficient of
variation, 0.086/0.1401 = 0.6, is large. Indeed, c = 0.1401
with α = 832.85 corresponds to 89.99 degrees, very close
to 90 degrees, for the angle between the two image axes. We
have also computed the aspect ratio α/β for each quadruple.

The mean of the aspect ratio is equal to 0.99995 with sample
deviation 0.00012. It is therefore very close to 1, i.e., the
pixels are square.

Application to image-based modeling. Two images of a
tea tin (see Fig. 6) were taken by the same camera as used
above for calibration. Mainly two sides are visible. We man-
ually picked 8 point matches on each side, and the structure-
from-motion software we developed earlier was run on these
16 point matches to build a partial model of the tea tin. The
reconstructed model is in VRML, and three rendered views
are shown in Fig. 7. The reconstructed points on each side
are indeed coplanar, and we computed the angle between the
two reconstructed planes which is 94.7◦. Although we do
not have the ground truth, but the two sides of the tea tin are
indeed almost orthogonal to each other.
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Figure 6: Two images of a tea tin
Figure 7: Three rendered views of the reconstructed tea tin

All the real data and results together with the software are
available from the following Web page:
http://research.microsoft.com/˜zhang/Calib/

6. Conclusion

In this paper, we have developed a new flexible technique
calibrate to easily a camera. The technique only requires
the camera to observe a planar pattern from a few (at least
two) different orientations. We can move either the cam-
era or the planar pattern. The motion does not need to be
known. Radial lens distortion is modeled. The proposed
procedure consists of a closed-form solution, followed by a
nonlinear refining based on maximum likelihood criterion.
Both computer simulation and real data have been used to
test the proposed technique, and very good results have been
obtained. Compared with classical techniques which use ex-
pensive equipment such as two or three orthogonal planes,
the proposed technique gains considerable flexibility.
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A. Estimation of the Homography Between the
Model Plane and its Image

There are many ways to estimate the homography be-
tween the model plane and its image. Here, we present a
technique based on maximum likelihood criterion. Let Mi

and mi be the model and image points, respectively. Ide-
ally, they should satisfy (2). In practice, they don’t because
of noise in the extracted image points. Let’s assume that mi

is corrupted by Gaussian noise with mean 0 and covariance
matrix Λmi

. Then, the maximum likelihood estimation of

H is obtained by minimizing the following functional

∑
i

(mi − m̂i)T Λ−1
mi

(mi − m̂i) ,

where m̂i =
1

h̄T
3 Mi

[
h̄T

1 Mi

h̄T
2 Mi

]
with h̄i, the ith row of H.

In practice, we simply assume Λmi
= σ2I for all i. This

is reasonable if points are extracted independently with
the same procedure. In this case, the above problem be-
comes a nonlinear least-squares one, i.e., minH

∑
i ‖mi −

m̂i‖2. The nonlinear minimization is conducted with
the Levenberg-Marquardt Algorithm as implemented in
Minpack [16]. This requires an initial guess, which can
be obtained as follows.

Let x = [h̄T
1 , h̄T

2 , h̄T
3 ]T . Then equation (2) can be rewrit-

ten as

[
M̃T 0T −uM̃T

0T M̃T −vM̃T

]
x = 0 .

When we are given n points, we have n above equations,
which can be written in matrix equation as Lx = 0, where
L is a 2n × 9 matrix. As x is defined up to a scale factor,
the solution is well known to be the right singular vector
of L associated with the smallest singular value (or equiva-
lently, the eigenvector of LT L associated with the smallest
eigenvalue).

In L, some elements are constant 1, some are in pixels,
some are in world coordinates, and some are multiplica-
tion of both. This makes L poorly conditioned numerically.
Much better results can be obtained by performing a simple
data normalization, such as the one proposed in [11], prior
to running the above procedure.

B. Extraction of the Intrinsic Parameters from
Matrix B

The matrix B, as described in Sect. 3.1, is estimated up to
a scale factor, i.e., , B = λA−T A with λ an arbitrary scale.
Without difficulty, we can uniquely extract the intrinsic pa-
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rameters from matrix B.

v0 = (B12B13 − B11B23)/(B11B22 − B2
12)

λ = B33 − [B2
13 + v0(B12B13 − B11B23)]/B11

α =
√

λ/B11

β =
√

λB11/(B11B22 − B2
12)

c = −B12α
2β/λ

u0 = cv0/α − B13α
2/λ .

C. Approximating a 3 × 3 matrix by a Rotation
Matrix

The problem considered in this section is to solve the best
rotation matrix R to approximate a given 3 × 3 matrix Q.
Here, “best” is in the sense of the smallest Frobenius norm
of the difference R − Q. The solution can be found in our
technical report [24].
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