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Abstract

We propose a flexible new technique to easily calibrate
a camera. It only requires the camera to observe a planar
pattern shown at a few (at least two) different orientations.
Either the camera or the planar pattern can be freely moved.
The motion need not be known. Radial lens distortion is
modeled. The proposed procedure consists of a closed-form
solution, followed by a nonlinear refinement based on the
maximum likelihood criterion. Both computer simulation
and real data have been used to test the proposed technique,
and very good results have been obtained. Compared with
classical techniques which use expensive equipment such as
two or three orthogonal planes, the proposed technique is
easy to use and flexible. It advances 3D computer vision
one step from laboratory environments to real world use.
The corresponding software is available from the author’s
Web page.
Keywords: Camera Cdlibration, Intrinsic Parameters, Lens Distortion,
Flexible Plane-Based Cadlibration, Motion Analysis, Model Acquisition.

1. Motivations

Camera cdlibration is a necessary step in 3D computer
visioninorder to extract metricinformation from 2D images.
Much work has been done, starting in the photogrammetry
community (see [2, 4] to cite a few), and more recently in
computer vision ([9, 8, 20, 7, 23, 21, 15, 6, 19] to cite a
few). We can classify those techniques roughly into two
categories:

Photogrammetric calibration. Calibration is performed
by observing a calibration object whose geometry in 3-D
space is known with very good precision. Calibration can
be done very efficiently [5]. The calibration object usually
consists of two or three planes orthogonal to each other.
Sometimes, a plane undergoing a precisely known transla-
tionisalsoused[20]. Theseapproachesrequirean expensive
calibration apparatus, and an elaborate setup.

Self-calibration. Techniques in this category do not use
any calibration object. Just by moving a camerain a static
scene, the rigidity of the scene provides in general two
constraints [15] on the cameras’ interna parameters from
one cameradisplacement by using image information alone.

http://research.microsoft.com/~zhang

Therefore, if images aretaken by the same camerawith fixed
internal parameters, correspondences between three images
are sufficient to recover both the internal and external pa-
rameters which allow us to reconstruct 3-D structure up to
asimilarity [14, 12]. While this approach is very flexible, it
isnot yet mature [1]. Because there are many parametersto
estimate, we cannot always obtain reliable results.

Other techniques exist: vanishing points for orthogonal
directions[3, 13], and calibration from purerotation[10, 18].

Our current research is focused on a desktop vision sys-
tem (DV S) sincethe potential for using DV Ssislarge. Cam-
eras are becoming cheap and ubiquitous. A DV Saimsat the
general public, who are not experts in computer vision. A
typical computer user will perform vision tasks only from
time to time, so will not be willing to invest money for ex-
pensive equipment. Therefore, flexibility, robustness and
low cost are important. The camera calibration technique
described in this paper was devel oped with these considera-
tionsin mind.

The proposed technique only requires the camera to ob-
serve a planar pattern shown at afew (at least two) different
orientations. The pattern can be printed on a laser printer
and attached to a “reasonable” planar surface (e.g., a hard
book cover). Either the camera or the planar pattern can
be moved by hand. The motion need not be known. The
proposed approach lies between the photogrammetric cali-
bration and self-calibration, becausewe use 2D metricinfor-
mation rather than 3D or purely implicit one. Both computer
simulation and real data have been used to test the proposed
technique, and very good results have been obtained. Com-
pared with classical techniques, the proposed technique is
considerably moreflexible. Compared with self-calibration,
it gains considerable degree of robustness. We believe the
new technique advances 3D computer vision one step from
laboratory environments to the real world.

Note that Bill Triggs [19] recently developed a self-
calibration techniquefrom at least 5 views of aplanar scene.
Histechniqueis moreflexiblethan ours, but has difficulty to
initialize. Liebowitz and Zisserman [13] described a tech-
nique of metric rectification for perspectiveimagesof planes
using metric information such as a known angle, two equal
though unknown angles, and aknown lengthratio. They also
mentioned that calibration of the internal camera parame-
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ters is possible provided such metrically rectified planes,
although no algorithm or experimental results were shown.

The paper isorganized asfollows. Section 2 describesthe
basic constraints from observing a single plane. Section 3
describes the calibration procedure. We start with a closed-
form solution, followed by nonlinear optimization. Radial
lensdistortion is also modeled. Section 4 studies configura-
tions in which the proposed calibration technique fails. Itis
very easy to avoid such situationsin practice. Section 5 pro-
vides the experimental results. Both computer simulation
and real dataare used to validate the proposed technique. In
the Appendix, we provides a number of details, including
the techniques for estimating the homography between the
model plane and itsimage.

2. Basic Equations

We examine the constraints on the camera’sintrinsic pa-
rameters provided by observing asingle plane. We start with
the notation used in this paper.

2.1. Notation

A 2D point is denoted by m = [u,v]T. A 3D point
is denoted by M = [X,Y, Z]T. We use x to denote the
augmented vector by adding 1 as the last lement: m =
[u,v,1]7 and M = [X,Y, Z,1]7. A camerais modeled by
the usua pinhole: therelationship between a3D point M and
itsimage projection m is given by

_ a ¢ U
sm=A[R tM withA= |0 5 w| ()
00 1

where s isan arbitrary scalefactor; (R, t), called the extrin-
sic parameters, is the rotation and trandation which relates
the world coordinate system to the camera coordinate sys-
tem; A is called the camera intrinsic matrix, and (ug, vo)
are the coordinates of the principal point, o and ( the scale
factorsinimage« and v axes, and ¢ the parameter describing
the skewness of the two image axes.
We use the abbreviation A~ for (A=) or (AT)~1,

2.2. Homogr aphy between the model planeand itsimage

Without loss of generality, we assume the model planeis
on Z = 0 of the world coordinate system. Let's denote the
i™ column of the rotation matrix R by r;. From (1), we have

X
u v X
slvlf =A [r1 ro rj t] ol = A [rl I t] Y
1 1 1

By abuse of notation, we still use M to denote a point on the
model plane, but M = [X, Y] since Z isaways equal to 0.

Inturn, M = [X, Y, 1]7. Therefore, amodel point M and its
image m isrelated by a homography H:

sm=HM with H=A[r; 1 t]. (2

Asisclear, the 3 x 3 matrix H isdefined up to ascale factor.
2.3. Constraintson theintrinsic parameters

Given an image of the model plane, an homography can
be estimated (see Appendix A). Let'sdenoteit by H =
[h; hy hs]. From (2), we have

[hl hQ h3] = )A [1‘1 Iro t] s

where \ isan arbitrary scalar. Using the knowledge that r
and r» are orthonormal, we have

h"A=TA " hy =0 ©)
h7ATA'h; =hlA"TA 'h,. 4

These are the two basic constraints on the intrinsic param-
eters, given one homography. Because a homography has
8 degrees of freedom and there are 6 extrinsic parameters
(3 for rotation and 3 for tranglation), we can only obtain 2
congtraints on the intrinsic parameters.

3. Solving Camera Calibration

This section provides the details how to effectively solve
the camera calibration problem. We start with an analyti-
cal solution, followed by anonlinear optimization technique
based on the maximum likelihood criterion. Finally, wetake
into account lens distortion, giving both analytical and non-
linear solutions.

3.1. Closed-form solution

Let
Bll B12 B13
B=ATA'= |Bjy By Bos
B3 Bs3 Bsg
1 __c cvg—uof
a? a? a?
I - LJfL 7@71&
— Oé2ﬁ (1252 BQ Ot2522 62
cvc;;goﬁ _0(0122767;0@_% (Cv(:ﬁggﬁ) _1_%_1_1
)
Note that B is symmetric, defined by a 6D vector
b = [Bi1, Bia, Baz, Bis, Bas, Bss] " . (6)

(It actually describes the image of the absolute conic.)
Let the i column vector of H be h; = [h;1, hiz, his] T
Then, we have

h!Bh; =v]b ™
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with - v; = [hithj1, hithje + hihji, hiohja,
hishji + hithjs, hishjs + hiohjs, hishjs]” .

Therefore, the two fundamental constraints (3) and (4), from
a given homography, can be rewritten as 2 homogeneous
equationsin b:

T
{ Vi

(Vi1 — va2)

T]b_o. )

If n. images of the model plane are observed, by stacking
n such equations as (8) we have

Vb=0, 9

where V isa2n x 6 matrix. If n > 3, we will have in
general a unigue solution b defined up to a scale factor.
If n = 2, we can impose the skewless constraint ¢ = 0,
i.e, [0,1,0,0,0,0]b = 0, which is added as an additional
equation to (9). The solution to (9) is well known as the
eigenvector of V'V associated with the smallest eigenvalue
(equivalently, the right singular vector of V associated with
the smallest singular value).

Onceb isestimated, we can computethe cameraintrinsic
matrix A. See Appendix B for the details.

Once A isknown, theextrinsic parametersfor eachimage
isreadily computed. From (2), we have

ri=MAA"'h;, ro=MA"'h,y, r3=r; X rs, t=AA"'hs

with A = 1/||A=th;| = 1/||A~thy]|. Of course, because
of noise in data, the so-computed matrix R = [ry, ra, r3]
doesnot in general satisfy the propertiesof arotation matrix.
Appendix C describes amethod to estimate the best rotation
matrix from agenera 3 x 3 matrix.

3.2. Maximum likelihood estimation

The above solution is obtained through minimizing an
algebraic distance which is not physically meaningful. We
can refine it through maximum likelihood inference.

We are given n images of amodel plane and there are m
points on the model plane. Assumethat theimage pointsare
corrupted by independent and identically distributed noise.
The maximum likelihood estimate can be obtained by min-
imizing the following functional:

DO Imy; — (A, R M) (10)

i=1 j=1

wherem (A, R, t;,M;) istheprojection of pointM; inimage
1, according to equation (2). A rotation R is parameterized
by a vector of 3 parameters, denoted by r, which is par-
alel to the rotation axis and whose magnitude is equal to
the rotation angle. R and r are related by the Rodrigues

formula [5]. Minimizing (10) is a nonlinear minimization
problem, which is solved with the Levenberg-Marquardt Al-
gorithm as implemented in Minpack [16]. It requires an
initial guessof A, {R;, t;|i = 1..n} which can be obtained
using the technique described in the previous subsection.

3.3. Dealing with radial distortion

Up to now, we have not considered lens distortion of a
camera. However, adesktop camera usually exhibits signif-
icant lensdistortion, especially radial distortion. In thissec-
tion, we only consider thefirst two termsof radial distortion.
The reader is referred to [17, 2, 4, 23] for more elaborated
models. Based on the reportsin the literature [2, 20, 22], it
islikely that the distortion function is totally dominated by
theradial components, and especially dominated by thefirst
term. It has aso been found that any more elaborated mod-
eling not only would not help (negligible when compared
with sensor quantization), but also would cause numerical
instability [20, 22].

Let (u,v) be the idea (nonobservable distortion-free)
pixel image coordinates, and (u, ©) the corresponding real
observed image coordinates. Similarly, (x,y) and (&, y) are
theideal (distortion-free) and real (distorted) normalizedim-
age coordinates. We have [2, 22]

x + x[ky (2 + y?) + ko(2® + y?)F]
J=y+ylk(z® + ) + ka(2® + 977,
where k, and k- are the coefficients of the radial distortion.

Thecenter of theradia distortionisthe same asthe principal
point. From & = ug + aZ + ¢y and v = vy + [y, we have

¢
I

u+ (u—uo)[ky (2% +9%) + ko (2 +9%)?]  (11)
+

b=v+ (v—uvo)l[k1(2® +9%) + k2(2® +9%)?] . (12)
Estimating Radial Distortion by Alternation. Asthera
dia distortion is expected to be small, one would expect to
estimate the other five intrinsic parameters, using the tech-
nique described in Sect. 3.2, reasonable well by simply ig-
noring distortion. One strategy is then to estimate k; and
ko after having estimated the other parameters. Then, from
(11) and (12), we have two equations for each point in each
image:

(u—uo) (2> +y?)

(ool (u—uo)(:c2+y2)2} m _[ﬂ—u} |

(v—vo) (2% +y?)?| |ko| ~ |D—v

Given m points in n images, we can stack all equations
together to obtain in total 2mn equations, or in matrix form
as Dk = d, wherek = [ky, k2], The linear least-squares
solution is given by

k= (D'D)"'Dd. (13)
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Once k; and k-, are estimated, one can refine the estimate of
the other parameters by solving (10) with (A, R;, t;,M;)
replaced by (11) and (12). We can alternate these two pro-
cedures until convergence.

Complete Maximum Likelihood Estimation. Experi-
mentally, we found the convergence of the above alterna-
tion techniqueisslow. A natural extension to (10) isthen to
estimate the complete set of parameters by minimizing the
following functional:

n m

SN mi; - (A kL ke, Rt )|, (14)

i=1 j=1

wherem(A, k1, k2, R,;, t;,M;) isthe projection of point M;
inimage ¢ according to equation (2), followed by distortion
according to (11) and (12). Thisis a nonlinear minimiza-
tion problem, whichissolved with the Levenberg-Marquardt
Algorithm asimplemented in Minpack [16]. A rotationis
again parameterized by a 3-vector r, asin Sect. 3.2. Anini-
tial guessof A and {R;, t;|i = 1..n} can be obtained using
the technique described in Sect. 3.1 or in Sect. 3.2. Anini-
tial guess of k£, and ko can be obtained with the technique
described in the last paragraph, or simply by setting them to
0.

3.4. Summary

The recommended calibration procedure is as follows:

1. Print apattern and attach it to a planar surface;

2. Take afew images of the model plane under different
orientations by moving either the plane or the camera;

3. Detect the feature points in the images;

4. Estimate the five intrinsic parameters and all the ex-
trinsic parameters using the closed-form solution asde-
scribed in Sect. 3.1;

5. Estimatethecoefficientsof theradial distortion by solv-
ing the linear least-squares (13);

6. Refineall parameters by minimizing (14).

4. Degener ate Configurations

We study in this section configurations in which addi-
tional images do not provide more constraints on the camera
intrinsic parameters. Because (3) and (4) are derived from
the properties of therotation matrix, if R isnot independent
of Ry, thenimage 2 does not provide additional constraints.
In particular, if a plane undergoes a pure trandation, then
R, = R; andimage 2 isnot helpful for cameracalibration.
Inthefollowing, we consider amore complex configuration.

Proposition 1. If the model plane at the second position is
parallel to its first position, then the second homography
does not provide additional constraints.
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Figure 1: Errors vs. the noise level of the image points

The proof is omitted due to space limitation, and is avail-
able from our technical report [24]. In practice, it is very
easy to avoid the degenerate configuration: we only need to
changethe orientation of the model plane from one snapshot
to another.

5. Experimental Results

Theproposed algorithm hasbeen tested on both computer
simulated data and real data. The closed-form solution in-
volves finding a singular value decomposition of a small
2n x 6 matrix, where n is the number of images. The non-
linear refining within the Levenberg-Marquardt algorithm
takes 3 to 5 iterations to converge.

5.1. Computer Simulations

The simulated camera has the following property: o =
1250, 8 = 900, ¢ = 1.09083 (equivalent to 89.95°), uy =
255, vg = 255. The image resolution is 512 x 512. The
model planeis a checker pattern containing 10 x 14 = 140
corner points(sowe usually havemore datainthe v direction
than in the « direction). The size of pattern is 18cmx25cm.
The orientation of the planeis represented by a 3D vector r,
which is parallel to the rotation axis and whose magnitude
is equal to the rotation angle. Its position is represented by
a 3D vector t (unit in centimeters).

Performance w.r.t. the noise level. In this experi-
ment, we use three planes with r; = [20°,0,0]7,
t; = [-9,-12.5,500]7, ro = [0,20°,0]7, ty =

[-9,-12.5,510]", r5 = J=[-30°,-30°, —15°]", t; =
[-10.5,—12.5,525]7. Gaussian noise with 0 mean and o
standard deviation is added to the projected image points.
The estimated camera parameters are then compared with
the ground truth. We measure the relative error for oo and
(3, and absolute error for ug and vy. We vary the noise level
from 0.1 pixelsto 1.5 pixels. For each noise level, we per-
form 100 independent trials, and the results shown are the
average. Aswe can see from Fig. 1, errorsincrease linearly
with the noise level. (The error for ¢ is not shown, but has
the same property.) For o = 0.5 (which is larger than the
normal noisein practical calibration), the errorsin « and 8
are less than 0.3%, and the errorsin uy and vg are around
1 pixel. The error in ug is larger than that in vy. The main
reason isthat there are less datain the « direction thaninthe
v direction, aswe said before.
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Figure 2: Errors vs. the number of images of the model plane
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Figure 3: Errors vs. the angle of the model plane w.r.t. the
image plane

Performance w.r.t. the number of planes. This experi-
ment investigates the performance with respect to the num-
ber of planes (more precisely, the number of images of the
model plane). The orientation and position of the model
planefor thefirst threeimagesarethe sameasin thelast sub-
section. From the fourth image, we first randomly choose a
rotation axisin auniform sphere, then apply arotation angle
of 30°. We vary the number of images from 2 to 16. For
each number, 100 trials of independent plane orientations
(except for the first three) and independent noise with mean
0 and standard deviation 0.5 pixels are conducted. The av-
erage result is shown in Fig.2. The errors decrease when
more images are used. From 2 to 3, the errors decrease
significantly.

Performance w.r.t. the orientation of the model plane.
This experiment examines the influence of the orientation
of the model plane with respect to the image plane. Three
images are used. The orientation of the plane is chosen as
follows: the planeisinitially parallel to the image plane; a
rotation axisis randomly chosen from a uniform sphere; the
planeisthen rotated around that axiswith angle §. Gaussian
noise with mean 0 and standard deviation 0.5 pixelsisadded
to the projected image points. We repeat this process 100
times and compute the average errors. The angle 6 varies
from 5° to 75°, and the result is shown in Fig.3. When
6 = 5°,40% of thetrial sfailed becausethe planesarealmost
parallel to each other (degenerate configuration), and the
result shown has excluded those trials. Best performance
seems to be achieved with an angle around 45°. Note that
in practice, when the angle increases, foreshortening makes
the corner detection less precise, but this is not considered
in this experiment.

5.2. Real Data

The proposed technique is now routinely used in our vi-
sion group and a so in the graphics group. Here, we provide

EEEEEENEN
EREEEEEER |

Figure 5: First and second images after having corrected
radial distortion

the result with one example.

The camera to be calibrated is an off-the-shelf PULNiX
CCD camera with 6 mm lens. The image resolution is
640x480. The model plane contains a pattern of 8 x 8
squares, so there are 256 corners. The size of the pattern
is 17cmx17cm. Five images of the plane under different
orientations were taken, as shown in Fig. 4. We can observe
asignificant lensdistortion in theimages. The corners were
detected as the intersection of straight lines fitted to each
sguare.

We applied our caibration agorithm to the first 2, 3, 4
and all 5images. Theresultsare showninTable 1. For each
configuration, three columns are given. The first column
(initial) isthe estimation of the closed-form solution.
The second column (£inal) isthe maximum likelihood es-
timation (MLE), and the third column (o) is the estimated
standard deviation, representing the uncertainty of the final
result. Asis clear, the closed-form solution is reasonable,
and the final estimates are very consistent with each other
whether weuse 2, 3, 4 or 5images. We a so notethat the un-
certainty of the final estimate decreases with the number of
images. Thelast row of Table 1, indicated by RMS, displays
the root of mean squared distances, in pixels, between de-
tected image points and projected ones. The MLE improves
considerably this measure.

The careful reader may remark the inconsistency for k;
and k- between the closed-form solution and the MLE. The
reason is that for the closed-form solution, camera intrin-
sic parameters are estimated assuming no distortion, and the
predicted outer points lie closer to the image center than the
detected ones. The subsequent distortion estimation tries
to spread the outer points and increase the scale in order to
reducethedistances, although thedistortion shape (with pos-
itive k1, called pincushion distortion) does not correspond
to the real distortion (with negative k,, caled barrel dis-
tortion). The nonlinear refining (MLE) finally recovers the
correct distortion shape. The estimated distortion parame-
tersallow usto correct the distortion in the original images.
Figure 5 displays the first two such distortion-corrected im-
ages, which should be compared with the first two images
shown in Figure 4. We see clearly that the curved patternin
the original images is straightened.

Variation of the calibration result. In Table 1, we have
shown the calibration results with 2 through 5 images, and
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Figure 4: Five images of a model plane, together with the extracted corners (indicated by cross, but too small to be observable)

Table 1: Results with real data of 2 through 5 images

nb 2 images 3 images 4 images 5images
initial final o | initia final o | initia final o | initia final o
! 82559 83047 474 | 91765 83080 2.06 | 87662 83181 156 | 877.16 83250 141
I6] 82526 83024 485 | 92053 830.69 210 | 87622 83182 155 | 87680 83253 1.38
c 0 0 0| 22956 0.1676 0.109 | 0.0658 0.2867 0.095 | 0.1752 0.2045 0.078
Ug 29579 307.03 137 | 277.09 30577 145 | 301.31 30453 0.86 | 301.04 30396 0.71
Vg 217.69 20655 0.93 | 22336 20642 1.00 | 22006 206.79 0.78 | 22041 20656  0.66
kq 0161 —-0.227 0.006 | 0128 —-0229 0006 | 0145 —-0229 0.005| 0136 —0.228 0.003
ky | —1.955 0.194 0.032 | —1.986 0.196 0.034 | —2.089 0.195 0.028 | —2.042 0.190 0.025

RMS | 0.761 0.295 0.987 0.393 0.927 0.361 0.881 0.335

Table 2: Variation of the calibration results among all quadruples of images

quadruple | (1234) (1235) (1245) (1345) (2345) mean  deviation

« 831.81 83209 83753 829.69 833.14 | 832.85 2.90

8 831.82 83210 83753 82991 833.11 | 83290 2.84

c 0.2867 0.1069 0.0611 0.1363 0.1096 | 0.1401 0.086

Ug 30453 304.32 30457 30395 30353 | 304.18 0.44

Vo 206.79 206.23 207.30 207.16 206.33 | 206.76 0.48

k1 -0.229 -0.228 -0.230 -0.227 -0.229 | —0.229  0.001

ko 0.195 0.191 0.193 0.179 0.190 0.190 0.006
RMS 0.361 0.357 0.262 0.358 0.334 0.334 0.04

we have found that the results are very consistent with each
other. In order to further investigate the stability of the pro-
posed algorithm, we have applied it to all combinations of 4
images from the available 5 images. The results are shown
in Table 2, where the third column (1235), for example, dis-
playsthe result with the quadruple of the first, second, third,
and fifthimage. The last two columns display the mean and
sample deviation of thefive setsof results. The sampledevi-
ationsfor all parameters are quite small, which implies that
the proposed algorithm isquite stable. Thevalue of the skew
parameter ¢ isnot significant from 0, since the coefficient of
variation, 0.086/0.1401 = 0.6, islarge. Indeed, ¢ = 0.1401
with o = 832.85 corresponds to 89.99 degrees, very close
to 90 degrees, for the angle between the two image axes. We
have al so computed the aspect ratio «/ 3 for each quadruple.

The mean of the aspect ratio isequal to 0.99995 with sample
deviation 0.00012. It istherefore very closeto 1, i.e, the
pixels are square.

Application to image-based modeling. Two images of a
tea tin (see Fig. 6) were taken by the same camera as used
abovefor calibration. Mainly two sidesarevisible. Weman-
ually picked 8 point matches on each side, and the structure-
from-motion software we devel oped earlier was run on these
16 point matches to build a partial model of theteatin. The
reconstructed model isin VRML, and three rendered views
are shown in Fig. 7. The reconstructed points on each side
areindeed coplanar, and we computed the angle between the
two reconstructed planes which is 94.7°. Although we do
not have the ground truth, but the two sides of theteatin are
indeed almost orthogonal to each other.
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Figure 6: Two images of a tea tin

All thereal dataand resultstogether with the software are
available from the following Web page:
http://research.microsoft.com/"zhang/Calib/

6. Conclusion

In this paper, we have devel oped anew flexible technique
calibrate to easily a camera. The technique only requires
the camera to observe a planar pattern from a few (at least
two) different orientations. We can move either the cam-
era or the planar pattern. The motion does not need to be
known. Radia lens distortion is modeled. The proposed
procedure consists of a closed-form solution, followed by a
nonlinear refining based on maximum likelihood criterion.
Both computer simulation and real data have been used to
test the proposed technique, and very good results have been
obtained. Compared with classical techniqueswhich use ex-
pensive equipment such as two or three orthogonal planes,
the proposed technique gains considerable flexibility.
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A. Estimation of the Homography Between the
Model Plane and itsImage

There are many ways to estimate the homography be-
tween the model plane and its image. Here, we present a
technique based on maximum likelihood criterion. Let M;
and m; be the model and image points, respectively. |de-
ally, they should satisfy (2). In practice, they don’t because
of noisein the extracted image points. Let'sassumethat m;
is corrupted by Gaussian noise with mean 0 and covariance
matrix Ap,,. Then, the maximum likelihood estimation of

Figure 7: Three rendered views of the reconstructed tea tin

H is obtained by minimizing the following functional

> (m; — 1) AL (my — 1hy)
7
1 [hTw I

where ;= e [E;ﬁj with h;, the " row of H.
In practice, we simply assume A,,, = oI for al i. This
is reasonable if points are extracted independently with
the same procedure. In this case, the above problem be-
comes a nonlinear |least-squares one, i.e., ming » ,; [m; —
m;||2.  The nonlinear minimization is conducted with
the Levenberg-Marquardt Algorithm as implemented in
Minpack [16]. This requires an initial guess, which can
be obtained as follows.

Letx = [h?, hI h%]”. Thenequation (2) can berewrit-
tenas

—uM?

MT OT
—oMT

of T } x=0.

When we are given n points, we have n above equations,
which can be written in matrix equation as Lx = 0, where
Lisa2n x 9 matrix. Asx isdefined up to a scale factor,
the solution is well known to be the right singular vector
of L associated with the smallest singular value (or equiva-
lently, the eigenvector of L™ L associated with the smallest
eigenvalue).

In L, some elements are constant 1, some are in pixels,
some are in world coordinates, and some are multiplica-
tion of both. This makes L poorly conditioned numerically.
Much better results can be obtained by performing asimple
data normalization, such as the one proposed in [11], prior
to running the above procedure.

B. Extraction of the Intrinsic Parametersfrom
Matrix B

Thematrix B, asdescribedin Sect. 3.1, isestimated up to
ascalefactor, i.e.,, B = AA~T A with X an arbitrary scale.
Without difficulty, we can uniquely extract the intrinsic pa-
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rameters from matrix B.

vg = (B12B13 — B11Ba3)/(B11Bas — B?,)

A = Bss — [B?5 + vo(B12B13 — B11B23)]/ B
o = \/)\/Bll

B = \/)\Bll/(BllBQQ — B%,)

Cc = —Blga2ﬁ/)\

ug = cvg/a — Bisa® /X .

C. Approximating a3 x 3 matrix by a Rotation

Matrix

The problem considered in this section isto solvethe best
rotation matrix R to approximate a given 3 x 3 matrix Q.
Here, “best” isin the sense of the smallest Frobenius norm
of the difference R — Q. The solution can be found in our
technical report [24].
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